Wrinkling and folding analysis of elastic membranes using an enhanced rotation-free thin shell triangular element

This paper presents a formulation for analysis of thin elastic membranes using a rotation-free shell element within an explicit time integration strategy. The applications presented are isotropic/anisotropic rectangular membranes under shear forces and fabric drapes falling over a pedestal. Results are compared with other numerical results existing in the literature.

[1]  Eugenio Oñate,et al.  Orthotropic rotation-free basic thin shell triangle , 2009 .

[2]  Peter Wriggers,et al.  Development of a wrinkling algorithm for orthotropic membrane materials , 2005 .

[3]  Nguyen Tien Dung,et al.  Geometrically nonlinear formulation for thin shells without rotation degrees of freedom , 2008 .

[4]  E. M. Haseganu,et al.  Analysis of partly wrinkled membranes by the method of dynamic relaxation , 1994 .

[5]  F. Cirak,et al.  A variational formulation for finite deformation wrinkling analysis of inelastic membranes , 2009 .

[6]  Philippe Boisse,et al.  A semi‐discrete shell finite element for textile composite reinforcement forming simulation , 2009 .

[7]  Eugenio Oñate,et al.  Advances in the formulation of the rotation-free basic shell triangle , 2005 .

[8]  Eugenio Oñate,et al.  Rotation-free triangular plate and shell elements , 2000 .

[9]  Roland Wüchner,et al.  Upgrading membranes to shells-The CEG rotation free shell element and its application in structural analysis , 2007 .

[10]  Patrizio Neff,et al.  A geometrically exact thin membrane model—investigation of large deformations and wrinkling , 2008 .

[11]  E. Oñate,et al.  A rotation‐free shell triangle for the analysis of kinked and branching shells , 2007 .

[12]  D. Steigmann,et al.  Tension-field theory , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Ekkehard Ramm,et al.  Shell structures—a sensitive interrelation between physics and numerics , 2004 .

[14]  K. Bletzinger,et al.  Efficient sub-grid scale modeling of membrane wrinkling by a projection method , 2009 .

[15]  John Wang,et al.  Effective Modeling and Nonlinear Shell Analysis of Thin Membranes Exhibiting Structural Wrinkling , 2005 .

[16]  X. H. Liu,et al.  Fabric drape simulation by solid-shell finite element method , 2007 .

[17]  Markus Pagitz,et al.  Simulation of tension fields with in-plane rotational degrees of freedom , 2010 .

[18]  Michel Brunet,et al.  Detailed formulation of the rotation‐free triangular element “S3” for general purpose shell analysis , 2006 .

[19]  M. R. Barnes,et al.  Form-finding and analysis of prestressed nets and membranes , 1988 .

[20]  E. Oñate,et al.  Nonlinear finite element analysis of orthotropic and prestressed membrane structures , 2009 .

[21]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[22]  Eugenio Oñate,et al.  Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach , 2005 .

[23]  Michihiro Natori,et al.  A simple computer implementation of membrane wrinkle behaviour via a projection technique , 2007 .