Exploring Bayesian parameter estimation for chiral effective field theory using nucleon–nucleon phase shifts
暂无分享,去创建一个
R. J. Furnstahl | D. R. Phillips | J. Melendez | R. Furnstahl | D. Phillips | S. Wesolowski | J. A. Melendez | S. Wesolowski
[1] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[2] Peter Melchior,et al. Dos and don'ts of reduced chi-squared , 2010, 1012.3754.
[3] Steven Weinberg,et al. Nuclear forces from chiral Lagrangians , 1990 .
[4] M. Wise,et al. A New expansion for nucleon-nucleon interactions , 1998, nucl-th/9801034.
[5] G. D'Agostini. Bayesian inference in processing experimental data: principles and basic applications , 2003 .
[6] John Skilling,et al. Data analysis : a Bayesian tutorial , 1996 .
[7] M. Wise,et al. Two nucleon systems from effective field theory , 1998, nucl-th/9802075.
[8] J. Vary,et al. Few- and many-nucleon systems with semilocal coordinate-space regularized chiral two- and three-body forces , 2018, Physical Review C.
[9] D. R. Entem,et al. Consistent, high-quality two-nucleon potentials up to fifth order of the chiral expansion , 2017, 1703.05454.
[10] S. Liebig,et al. Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces , 2015, 1505.07218.
[11] Bayesian methods for parameter estimation in effective field theories , 2009 .
[12] Joel Tellinghuisen,et al. Statistical Error Propagation , 2001 .
[13] R. Schiavilla,et al. Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances , 2014, 1412.6446.
[14] Jonathan R Goodman,et al. Ensemble samplers with affine invariance , 2010 .
[15] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[16] J. Dobaczewski,et al. Error Estimates of Theoretical Models: a Guide , 2014, 1402.4657.
[17] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[18] S. Weinberg. Effective chiral lagrangians for nucleonpion interactions and nuclear forces , 1991 .
[19] K. Schmidt,et al. Properties of Nuclei up to A=16 using Local Chiral Interactions. , 2017, Physical review letters.
[20] R. Furnstahl,et al. Field redefinitions at finite density , 2000, nucl-th/0010078.
[21] J. Gegelia. Issues of regularization and renormalization in effective field theories of nucleon-nucleon scattering , 1999 .
[22] A. Schwenk,et al. Analyzing the Fierz rearrangement freedom for local chiral two-nucleon potentials , 2017, 1708.03194.
[23] Judea Pearl,et al. Bayesian Networks , 1998, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..
[24] R. Furnstahl,et al. Regulator Artifacts in Uniform Matter for Chiral Interactions , 2016, 1602.08038.
[25] H. Hammer,et al. Modern theory of nuclear forces , 2004, 0811.1338.
[26] EFFECTIVE FIELD THEORY FOR FEW-NUCLEON SYSTEMS* , 2002, nucl-th/0203055.
[27] John M. Chambers,et al. Graphical Methods for Data Analysis , 1983 .
[28] M. Hoferichter,et al. Roy-Steiner-equation analysis of pion-nucleon scattering , 2015, 1510.06039.
[29] R. Furnstahl,et al. Bayesian parameter estimation in effective field theories , 2008, 1511.03618.
[30] J. Pumplin,et al. Uncertainties of predictions from parton distribution functions. I. The Lagrange multiplier method , 2001 .
[31] E. Epelbaum,et al. Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion. , 2014, Physical review letters.
[32] María M. Abad-Grau,et al. Points of Significance: Bayesian networks , 2015, Nature Methods.
[33] J. Huston,et al. Uncertainties of predictions from parton distribution functions , 2001 .
[34] E. Epelbaum,et al. Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order , 2017, 1711.08821.
[35] Stefano Peluso,et al. Convergence and Mixing in Markov Chain Monte Carlo: Advanced Algorithms and Latest Developments , 2015 .
[36] A. O'Hagan,et al. Bayesian calibration of computer models , 2001 .
[37] Sarah Wesolowski,et al. Bayesian Methods for Effective Field Theories , 2017 .
[38] Natalie Klco,et al. Bayesian Errors and Rogue Effective Field Theories , 2015 .
[39] Daniel R. Phillips,et al. NONPERTURBATIVE REGULARIZATION AND RENORMALIZATION : SIMPLE EXAMPLES FROM NONRELATIVISTIC QUANTUM MECHANICS , 1997 .
[40] D. R. Phillips,et al. The potential of effective field theory in NN scattering , 1998 .
[41] A. Ekstrom,et al. Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions , 2015, 1506.02466.
[42] Philip C. Gregory,et al. Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .
[43] R. Furnstahl,et al. A recipe for EFT uncertainty quantification in nuclear physics , 2014, 1407.0657.
[44] J. E. Amaro,et al. Partial-wave analysis of nucleon-nucleon scattering below the pion-production threshold , 2013, 1304.0895.
[45] Pedro Carvalho,et al. Validation of Bayesian posterior distributions using a multidimensional Kolmogorov-Smirnov test , 2014, 1404.7735.
[46] R. J. Furnstahl,et al. Bayesian truncation errors in chiral effective field theory: Nucleon-nucleon observables , 2017, 1704.03308.
[47] J. E. Amaro,et al. Erratum: Partial-wave analysis of nucleon-nucleon scattering below the pion-production threshold [Phys. Rev. C 88, 024002 (2013)] , 2013 .
[48] R. Furnstahl,et al. Quantifying truncation errors in effective field theory , 2015, 1506.01343.
[49] R. T. Birge,et al. The Calculation of Errors by the Method of Least Squares , 1932 .
[50] E. Epelbaum,et al. Chiral Dynamics of Few- and Many-Nucleon Systems , 2012, 1201.2136.
[51] E. Epelbaum,et al. Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order , 2014, The European Physical Journal A.
[52] Stoks,et al. Partial-wave analysis of all nucleon-nucleon scattering data below 350 MeV. , 1993, Physical review. C, Nuclear physics.
[53] K. Schmidt,et al. Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions , 2018, 1802.08932.
[54] David B. Dunson,et al. Bayesian data analysis, third edition , 2013 .
[55] A renormalisation-group treatment of two-body scattering , 1998, hep-ph/9807302.
[56] J. Vary,et al. Few-nucleon and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces , 2018, Physical Review C.