Exploring Bayesian parameter estimation for chiral effective field theory using nucleon–nucleon phase shifts

We recently developed a Bayesian framework for parameter estimation in general effective field theories. Here we present selected results from using that framework to estimate parameters with a nucleon-nucleon (NN) potential derived using chiral effective field theory ($\chi$EFT): the semi-local NN potential of Epelbaum, Krebs, and Mei{\ss}ner (EKM). There are many NN scattering data, up to high energies, and with rather small errors, so imposing a penalty for unnatural low-energy constants (LECs) usually has a small effect on the fits. In contrast, we have found that including an estimate of higher orders in $\chi$EFT plays an important role in robust parameter estimation.We present two case studies where our Bayesian machinery illuminates physics issues. The first involves the EKM potential at fourth order in the $\chi$EFT expansion: the two-dimensional posterior probability density function (pdf) for the fourth-order $s$-wave LECs obtained from the Nijmegen PWA93 phase shifts indicates these parameters in the NN potential are degenerate. We trace this feature of the pdf to the presence of an operator in the fourth-order NN potential that vanishes on-shell. The second case study examines the stability of LEC extractions as more data at higher energies are included in the fit. We show that as long as $\chi$EFT truncation errors are properly accounted for in the parameter estimation, the LEC values extracted using our Bayesian approach are not sensitive to the maximum energy chosen for the fit.Uncorrelated and fully correlated models for the truncation errors are compared, pointing the way to the use of Gaussian processes to more generally model the correlation structure.

[1]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[2]  Peter Melchior,et al.  Dos and don'ts of reduced chi-squared , 2010, 1012.3754.

[3]  Steven Weinberg,et al.  Nuclear forces from chiral Lagrangians , 1990 .

[4]  M. Wise,et al.  A New expansion for nucleon-nucleon interactions , 1998, nucl-th/9801034.

[5]  G. D'Agostini Bayesian inference in processing experimental data: principles and basic applications , 2003 .

[6]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[7]  M. Wise,et al.  Two nucleon systems from effective field theory , 1998, nucl-th/9802075.

[8]  J. Vary,et al.  Few- and many-nucleon systems with semilocal coordinate-space regularized chiral two- and three-body forces , 2018, Physical Review C.

[9]  D. R. Entem,et al.  Consistent, high-quality two-nucleon potentials up to fifth order of the chiral expansion , 2017, 1703.05454.

[10]  S. Liebig,et al.  Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces , 2015, 1505.07218.

[11]  Bayesian methods for parameter estimation in effective field theories , 2009 .

[12]  Joel Tellinghuisen,et al.  Statistical Error Propagation , 2001 .

[13]  R. Schiavilla,et al.  Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances , 2014, 1412.6446.

[14]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[15]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[16]  J. Dobaczewski,et al.  Error Estimates of Theoretical Models: a Guide , 2014, 1402.4657.

[17]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[18]  S. Weinberg Effective chiral lagrangians for nucleonpion interactions and nuclear forces , 1991 .

[19]  K. Schmidt,et al.  Properties of Nuclei up to A=16 using Local Chiral Interactions. , 2017, Physical review letters.

[20]  R. Furnstahl,et al.  Field redefinitions at finite density , 2000, nucl-th/0010078.

[21]  J. Gegelia Issues of regularization and renormalization in effective field theories of nucleon-nucleon scattering , 1999 .

[22]  A. Schwenk,et al.  Analyzing the Fierz rearrangement freedom for local chiral two-nucleon potentials , 2017, 1708.03194.

[23]  Judea Pearl,et al.  Bayesian Networks , 1998, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[24]  R. Furnstahl,et al.  Regulator Artifacts in Uniform Matter for Chiral Interactions , 2016, 1602.08038.

[25]  H. Hammer,et al.  Modern theory of nuclear forces , 2004, 0811.1338.

[26]  EFFECTIVE FIELD THEORY FOR FEW-NUCLEON SYSTEMS* , 2002, nucl-th/0203055.

[27]  John M. Chambers,et al.  Graphical Methods for Data Analysis , 1983 .

[28]  M. Hoferichter,et al.  Roy-Steiner-equation analysis of pion-nucleon scattering , 2015, 1510.06039.

[29]  R. Furnstahl,et al.  Bayesian parameter estimation in effective field theories , 2008, 1511.03618.

[30]  J. Pumplin,et al.  Uncertainties of predictions from parton distribution functions. I. The Lagrange multiplier method , 2001 .

[31]  E. Epelbaum,et al.  Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion. , 2014, Physical review letters.

[32]  María M. Abad-Grau,et al.  Points of Significance: Bayesian networks , 2015, Nature Methods.

[33]  J. Huston,et al.  Uncertainties of predictions from parton distribution functions , 2001 .

[34]  E. Epelbaum,et al.  Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order , 2017, 1711.08821.

[35]  Stefano Peluso,et al.  Convergence and Mixing in Markov Chain Monte Carlo: Advanced Algorithms and Latest Developments , 2015 .

[36]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[37]  Sarah Wesolowski,et al.  Bayesian Methods for Effective Field Theories , 2017 .

[38]  Natalie Klco,et al.  Bayesian Errors and Rogue Effective Field Theories , 2015 .

[39]  Daniel R. Phillips,et al.  NONPERTURBATIVE REGULARIZATION AND RENORMALIZATION : SIMPLE EXAMPLES FROM NONRELATIVISTIC QUANTUM MECHANICS , 1997 .

[40]  D. R. Phillips,et al.  The potential of effective field theory in NN scattering , 1998 .

[41]  A. Ekstrom,et al.  Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions , 2015, 1506.02466.

[42]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[43]  R. Furnstahl,et al.  A recipe for EFT uncertainty quantification in nuclear physics , 2014, 1407.0657.

[44]  J. E. Amaro,et al.  Partial-wave analysis of nucleon-nucleon scattering below the pion-production threshold , 2013, 1304.0895.

[45]  Pedro Carvalho,et al.  Validation of Bayesian posterior distributions using a multidimensional Kolmogorov-Smirnov test , 2014, 1404.7735.

[46]  R. J. Furnstahl,et al.  Bayesian truncation errors in chiral effective field theory: Nucleon-nucleon observables , 2017, 1704.03308.

[47]  J. E. Amaro,et al.  Erratum: Partial-wave analysis of nucleon-nucleon scattering below the pion-production threshold [Phys. Rev. C 88, 024002 (2013)] , 2013 .

[48]  R. Furnstahl,et al.  Quantifying truncation errors in effective field theory , 2015, 1506.01343.

[49]  R. T. Birge,et al.  The Calculation of Errors by the Method of Least Squares , 1932 .

[50]  E. Epelbaum,et al.  Chiral Dynamics of Few- and Many-Nucleon Systems , 2012, 1201.2136.

[51]  E. Epelbaum,et al.  Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order , 2014, The European Physical Journal A.

[52]  Stoks,et al.  Partial-wave analysis of all nucleon-nucleon scattering data below 350 MeV. , 1993, Physical review. C, Nuclear physics.

[53]  K. Schmidt,et al.  Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions , 2018, 1802.08932.

[54]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[55]  A renormalisation-group treatment of two-body scattering , 1998, hep-ph/9807302.

[56]  J. Vary,et al.  Few-nucleon and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces , 2018, Physical Review C.