SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres

[1]  A. Lustig,et al.  RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. , 1993, Genes & development.

[2]  M. Yanagida,et al.  Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast , 1993, The Journal of cell biology.

[3]  E. Gilson,et al.  Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. , 1993, Journal of molecular biology.

[4]  E. Blackburn,et al.  An alternative pathway for yeast telomere maintenance rescues est1− senescence , 1993, Cell.

[5]  E. Gilson,et al.  Telomeres and the functional architecture of the nucleus. , 1993, Trends in cell biology.

[6]  D. Ward,et al.  Cell cycle-dependent distribution of telomeres, centromeres, and chromosome-specific subsatellite domains in the interphase nucleus of mouse lymphocytes. , 1993, Experimental cell research.

[7]  R. Wellinger,et al.  Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase , 1993, Cell.

[8]  E. Gilson,et al.  The positioning of yeast telomeres depends on SIR3, SIR4, and the integrity of the nuclear membrane. , 1993, Cold Spring Harbor symposia on quantitative biology.

[9]  J. Rine,et al.  Silencers, silencing, and heritable transcriptional states. , 1992, Microbiological reviews.

[10]  A. Lustig,et al.  C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[11]  F. Klein,et al.  Localization of RAP1 and topoisomerase II in nuclei and meiotic chromosomes of yeast , 1992, The Journal of cell biology.

[12]  Bruce Stillman,et al.  ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex , 1992, Nature.

[13]  M. Longtine,et al.  Yeast telomere repeat sequence (TRS) improves circular plasmid segregation, and TRS plasmid segregation involves the RAP1 gene product , 1992, Molecular and cellular biology.

[14]  D. Shore,et al.  A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. , 1992, Genes & development.

[15]  D. Gottschling Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. Wright,et al.  Saccharomyces telomeres assume a non-nucleosomal chromatin structure. , 1992, Genes & development.

[17]  A. Klar,et al.  Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. , 1992, Genes & development.

[18]  V. Zakian,et al.  Telomeric position effect in yeast. , 1992, Trends in cell biology.

[19]  Oscar M. Aparicio,et al.  Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae , 1991, Cell.

[20]  D. Shore,et al.  Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Wolf,et al.  RAP1 protein interacts with yeast telomeres in vivo: Overproduction alters telomere structure and decreases chromosome stability , 1990, Cell.

[22]  Barbara L. Billington,et al.  Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription , 1990, Cell.

[23]  D. Shore,et al.  Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length , 1990, Science.

[24]  M. Grunstein,et al.  Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Shoeman,et al.  The in vitro DNA-binding properties of purified nuclear lamin proteins and vimentin. , 1990, The Journal of biological chemistry.

[26]  V. Zakian,et al.  Telomere telomere recombination provides an express pathway for telomere acquisition , 1990, Nature.

[27]  J. Diffley,et al.  Transcriptional silencing and lamins , 1989, Nature.

[28]  J. Broach,et al.  The HML mating-type cassette of Saccharomyces cerevisiae is regulated by two separate but functionally equivalent silencers , 1989, Molecular and cellular biology.

[29]  A. Brand,et al.  RAP-1 factor is necessary for DNA loop formation in vitro at the silent mating type locus HML , 1989, Cell.

[30]  J. Szostak,et al.  A mutant with a defect in telomere elongation leads to senescence in yeast , 1989, Cell.

[31]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[32]  R. McCarroll,et al.  Time of replication of yeast centromeres and telomeres , 1988, Cell.

[33]  J. Hegemann,et al.  Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. , 1988, Molecular and cellular biology.

[34]  J. Rine,et al.  Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae , 1988, Molecular and cellular biology.

[35]  E. Harlow,et al.  Antibodies: A Laboratory Manual , 1988 .

[36]  K. Nasmyth,et al.  A yeast silencer contains sequences that can promote autonomous plasmid replication and transcriptional activation , 1987, Cell.

[37]  Kim Nasmyth,et al.  Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements , 1987, Cell.

[38]  J. Rine,et al.  Replication and segregation of plasmids containing cis-acting regulatory sites of silent mating-type genes in Saccharomyces cerevisiae are controlled by the SIR genes , 1987, Molecular and cellular biology.

[39]  J. Broach,et al.  Functional domains of SIR4, a gene required for position effect regulation in Saccharomyces cerevisiae , 1987, Molecular and cellular biology.

[40]  I. Herskowitz,et al.  Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. , 1987, Genetics.

[41]  U. K. Laemmli,et al.  Metaphase chromosome structure. Involvement of topoisomerase II. , 1986, Journal of molecular biology.

[42]  J W Sedat,et al.  Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster , 1986, The Journal of cell biology.

[43]  L. Hartwell,et al.  Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. , 1985, Genetics.

[44]  J. Sedat,et al.  Characteristic folding pattern of polytene chromosomes in Drosophila salivary gland nuclei , 1984, Nature.

[45]  B. Müller-Hill,et al.  Easy identification of cDNA clones. , 1983, The EMBO journal.

[46]  W. Gruissem,et al.  Higher order DNA structure in macronuclear chromatin of the hypotrichous ciliate Oxytricha nova. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[47]  G. Fink,et al.  Methods in yeast genetics , 1979 .