Formation of Strong Boron Lewis Acid Sites on Silica

Bis(1-methyl-ortho-carboranyl)borane (HBMeoCb2) is a very strong Lewis acid that reacts with the isolated silanols present on silica partially dehydroxylated at 700 °C (SiO2-700) to form the well-defined Lewis site MeoCb2B(OSi≡) (1) and H2. 11B{1H} magic-angle spinning (MAS) nuclear magnetic resonance (NMR) data of 1 are consistent with that of a three-coordinate boron site. Contacting 1 with O=PEt3 (triethylphosphine oxide TEPO) and measuring 31P{1H} MAS NMR spectra show that 1 preserves the strong Lewis acidity of HBMeoCb2. Hydride ion affinity and fluoride ion affinity calculations using small molecules analogs of 1 also support the strong Lewis acidity of the boron sites in this material. Reactions of 1 with Cp2Hf(13CH3)2 show that the Lewis sites are capable of abstracting methide groups from Hf to form [Cp2Hf–13CH3][H313C–B(MeoCb2)OSi≡], but with a low overall efficiency.

[1]  M. Conley,et al.  A Supported Ziegler-Type Organohafnium Site Metabolizes Polypropylene , 2023, Journal of the American Chemical Society.

[2]  J. Dutton,et al.  The Effect of Carborane Substituents on the Lewis Acidity of Boranes. , 2023, Inorganic chemistry.

[3]  J. Dutton,et al.  Bis(1-methyl-ortho-carboranyl)borane. , 2023, Angewandte Chemie.

[4]  J. Dutton,et al.  Tris(ortho‐carboranyl)borane: An Isolable, Halogen‐Free, Lewis Superacid , 2022, Angewandte Chemie.

[5]  Aaron J. Rossini,et al.  Formation of a Strong Heterogeneous Aluminum Lewis Acid on Silica. , 2022, Angewandte Chemie.

[6]  Hannah E. Starr A Complex Molecular Symmetry Analysis of Silsesquioxane Catalysts for Inorganic Students , 2022, Journal of Chemical Education.

[7]  F. Zaera Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? , 2022, Chemical reviews.

[8]  Aaron J. Rossini,et al.  A Heterogeneous Palladium Catalyst for the Polymerization of Olefins Prepared by Halide Abstraction Using Surface R3Si+ Species. , 2022, Angewandte Chemie.

[9]  M. R. Gagné,et al.  Probing the Source of Enhanced Activity in Multiborylated Silsesquioxane Catalysts for C–O Bond Reduction , 2022, Organometallics.

[10]  L. Greb,et al.  What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method , 2021, Angewandte Chemie.

[11]  A. Lipton,et al.  Active Sites in a Heterogeneous Organometallic Catalyst for the Polymerization of Ethylene , 2021, ACS central science.

[12]  W. P. McDermott,et al.  Controlled Grafting Synthesis of Silica-Supported Boron for Oxidative Dehydrogenation Catalysis , 2021 .

[13]  J. Niemantsverdriet,et al.  Silica Nanopowder Supported Frustrated Lewis Pairs for CO2 Capture and Conversion to Formic Acid. , 2020, Inorganic chemistry.

[14]  David M. Kaphan,et al.  Nontraditional Catalyst Supports in Surface Organometallic Chemistry , 2020 .

[15]  Michael Spruell,et al.  Jason , 2020, Deporting Black Britons.

[16]  J. Venegas,et al.  Why Boron Nitride is such a Selective Catalyst for the Oxidative Dehydrogenation of Propane. , 2020, Angewandte Chemie.

[17]  L. Greb,et al.  An Extensive Set of Accurate Fluoride Ion Affinities for p‐Block Element Lewis Acids and Basic Design Principles for Strong Fluoride Ion Acceptors , 2020, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  L. Kovarik,et al.  Precise identification and characterization of catalytically active sites on the surface of γ-alumina. , 2020, Angewandte Chemie.

[19]  W. P. McDermott,et al.  B-MWW Zeolite: The Case Against Single-Site Catalysis. , 2020, Angewandte Chemie.

[20]  Wen‐Cui Li,et al.  Supported Boron Oxide Catalysts for Selective and Low-Temperature Oxidative Dehydrogenation of Propane , 2019, ACS Catalysis.

[21]  F. Dogan,et al.  Modification of rGO by B(C6F5)3 to generated single-site Lewis Acid rGO-O-B(C6F5)2 as co activator of nickel complex, to produce highly disperse rGO-PE nanocomposite , 2019, Applied Catalysis A: General.

[22]  J. T. Grant,et al.  Probing the Transformation of Boron Nitride Catalysts under Oxidative Dehydrogenation Conditions. , 2018, Journal of the American Chemical Society.

[23]  D. B. Culver,et al.  Activation of C-F Bonds by Electrophilic Organosilicon Sites Supported on Sulfated Zirconia. , 2018, Angewandte Chemie.

[24]  K. Szeto,et al.  A Strong Support Effect in Selective Propane Dehydrogenation Catalyzed by Ga(i-Bu)3 Grafted onto γ-Alumina and Silica , 2018, ACS Catalysis.

[25]  A. Fedorov,et al.  Bridging the Gap between Industrial and Well-Defined Supported Catalysts. , 2018, Angewandte Chemie.

[26]  Rebecca L. Melen,et al.  Tris(pentafluorophenyl)borane and Beyond: Modern Advances in Borylation Chemistry. , 2017, Inorganic chemistry.

[27]  J. T. Grant,et al.  Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts , 2016, Science.

[28]  Christophe Copéret,et al.  Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. , 2016, Chemical reviews.

[29]  T. Müller,et al.  Quantitative Assessment of the Lewis Acidity of Silylium Ions , 2015 .

[30]  S. Kerdiles,et al.  Functionalization of Silica Nanoparticles and Native Silicon Oxide with Tailored Boron-Molecular Precursors for Efficient and Predictive p-Doping of Silicon , 2015 .

[31]  G. Erker,et al.  Frustrated Lewis pair chemistry: development and perspectives. , 2015, Angewandte Chemie.

[32]  T. Marks,et al.  Supported Single-Site Organometallic Catalysts for the Synthesis of High-Performance Polyolefins , 2015, Catalysis Letters.

[33]  P. Sautet,et al.  Chlorodiethylaluminum supported on silica: A dinuclear aluminum surface species with bridging μ2-Cl-ligand as a highly efficient co-catalyst for the Ni-catalyzed dimerization of ethene , 2014 .

[34]  P. Sautet,et al.  Triisobutylaluminum: bulkier and yet more reactive towards silica surfaces than triethyl or trimethylaluminum. , 2013, Dalton transactions.

[35]  W. Piers,et al.  Comparative Lewis Acidity in Fluoroarylboranes: B(o-HC6F4)3, B(p-HC6F4)3, and B(C6F5)3 , 2013 .

[36]  D. Curran,et al.  Silica gel promotes reductions of aldehydes and ketones by N-heterocyclic carbene boranes. , 2012, Organic letters.

[37]  M. Taoufik,et al.  On the Fate of Silica-Supported Half-Metallocene Cations: Elucidating a Catalyst’s Deactivation Pathways , 2012 .

[38]  P. Sautet,et al.  Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations. , 2012, Journal of the American Chemical Society.

[39]  Jerry G. Hu,et al.  Borane-induced dehydration of silica and the ensuing water-catalyzed grafting of B(C6F5)3 to give a supported, single-site Lewis acid, ≡SiOB(C6F5)2. , 2012, Journal of the American Chemical Society.

[40]  P. Sautet,et al.  Optimal water coverage on alumina: a key to generate Lewis acid-base pairs that are reactive towards the C-H bond activation of methane. , 2011, Angewandte Chemie.

[41]  S. Scott,et al.  Evidence for the pairwise disposition of grafting sites on highly dehydroxylated silicas via their reactions with Ga(CH3)3. , 2011, Journal of the American Chemical Society.

[42]  C. Santini,et al.  A well-defined silica-supported aluminium alkyl through an unprecedented, consecutive two-step protonolysis-alkyl transfer mechanism. , 2011, Chemical communications.

[43]  John M. Slattery,et al.  Simple Access to the Non-Oxidizing Lewis superacid PhF --> Al(OR(F))3 (R(F) = C(CF3)3). , 2008, Angewandte Chemie.

[44]  Philippe Sautet,et al.  Molecular understanding of alumina supported single-site catalysts by a combination of experiment and theory. , 2006, Journal of the American Chemical Society.

[45]  S. Scott,et al.  Formation of Digallium Sites in the Reaction of Trimethylgallium with Silica , 2006 .

[46]  H. Kim,et al.  Organoborane-Modified Silica Supports for Olefin Polymerization: Soluble Models for Metallocene Catalyst Deactivation , 2002 .

[47]  T. Marks,et al.  Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. , 2000, Chemical reviews.

[48]  R. Duchateau,et al.  Silica-Grafted Borato Cocatalysts for Olefin Polymerization Modeled by Silsesquioxane−Borato Complexes , 2000 .

[49]  W. Piers,et al.  Pentafluorophenylboranes: from obscurity to applications , 1998 .

[50]  T. Sodesawa,et al.  Surface structure and acidity of alumina-boria catalysts , 1995 .

[51]  D. Parks,et al.  Bis(pentafluorophenyl)borane: Synthesis, Properties, and Hydroboration Chemistry of a Highly Electrophilic Borane Reagent , 1995 .

[52]  Tobin J. Marks,et al.  Cationic zirconocene olefin polymerization catalysts based on the organo-Lewis acid tris(pentafluorophenyl)borane. A synthetic, structural, solution dynamic, and polymerization catalytic study , 1994 .

[53]  S. Heřmánek Boron-11 NMR spectra of boranes, main-group heteroboranes, and substituted derivatives. Factors influencing chemical shifts of skeletal atoms , 1992 .

[54]  H. Kawashima,et al.  An infrared study of hydroboration of lower olefins with diborane on γ-Al2O3 , 1977 .

[55]  V. Bermudez Infrared study of boron trichloride chemisorbed on silica gel , 1971 .

[56]  R. Drago,et al.  Measurement of the Global Acidity of Solid Acids by 31P MAS NMR of Chemisorbed Triethylphosphine Oxide , 2000 .

[57]  T. Marks Surface-bound metal hydrocarbyls. Organometallic connections between heterogeneous and homogeneous catalysis , 1992 .

[58]  T. Marks,et al.  Supported Organoactinides. High-Resolution Solid-State 13C NMR Studies of Catalytically Active, Alumina-Bound (Pentamethylcyclopentadienyl)thorium Methyl and Hydride Complexes , 1985 .

[59]  B. Morrow,et al.  Reactions of silica surfaces with boron halides , 1971 .