Simulating groundstate and dynamical quantum phase transitions on a superconducting quantum computer

[1]  Ruslan N. Tazhigulov,et al.  Simulating challenging correlated molecules and materials on the Sycamore quantum processor , 2022, 2203.15291.

[2]  Yuchen Guo,et al.  Quantum Error Mitigation via Matrix Product Operators , 2022, PRX Quantum.

[3]  P. P. Orth,et al.  Quantum dynamics simulations beyond the coherence time on noisy intermediate-scale quantum hardware by variational Trotter compression , 2021, Physical Review Research.

[4]  A. Montanaro,et al.  Observing ground-state properties of the Fermi-Hubbard model using a scalable algorithm on a quantum computer , 2021, Nature Communications.

[5]  A. Green,et al.  Phase transitions in the classical simulability of open quantum systems , 2021, Scientific reports.

[6]  C. K. Andersen,et al.  Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases , 2021, Nature Communications.

[7]  G. Chan,et al.  Variational Power of Quantum Circuit Tensor Networks , 2021, Physical Review X.

[8]  H. Neven,et al.  Realizing topologically ordered states on a quantum processor , 2021, Science.

[9]  Minh C. Tran,et al.  Theory of Trotter Error with Commutator Scaling , 2021 .

[10]  H. Neven,et al.  Information scrambling in quantum circuits , 2021, Science.

[11]  Giuseppe Carleo,et al.  An efficient quantum algorithm for the time evolution of parameterized circuits , 2021, Quantum.

[12]  H. Neven,et al.  Accurately computing the electronic properties of a quantum ring , 2020, Nature.

[13]  Masoud Mohseni,et al.  Observation of separated dynamics of charge and spin in the Fermi-Hubbard model , 2020, 2010.07965.

[14]  A. Green,et al.  Real- and Imaginary-Time Evolution with Compressed Quantum Circuits , 2020, PRX Quantum.

[15]  A. Green,et al.  Parallel quantum simulation of large systems on small NISQ computers , 2020, npj Quantum Information.

[16]  F. Nori,et al.  Probing dynamical phase transitions with a superconducting quantum simulator , 2019, Science Advances.

[17]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[18]  Adam Smith,et al.  Crossing a topological phase transition with a quantum computer , 2019, Physical Review Research.

[19]  M. Zaletel,et al.  Isometric Tensor Network States in Two Dimensions. , 2019, Physical review letters.

[20]  H. Fan,et al.  Observation of a Dynamical Quantum Phase Transition by a Superconducting Qubit Simulation , 2018, Physical Review Applied.

[21]  A. Green,et al.  The Lyapunov spectra of quantum thermalisation , 2018, Nature Communications.

[22]  H. Neven,et al.  Quantum simulation of the Sachdev-Ye-Kitaev model by asymmetric qubitization , 2018, Physical Review A.

[23]  Joaquin F. Rodriguez-Nieva,et al.  Identifying topological order through unsupervised machine learning , 2018, Nature Physics.

[24]  K. Birgitta Whaley,et al.  Towards quantum machine learning with tensor networks , 2018, Quantum Science and Technology.

[25]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[26]  C. F. Roos,et al.  Efficient tomography of a quantum many-body system , 2016, Nature Physics.

[27]  R. Melko,et al.  Machine Learning Phases of Strongly Correlated Fermions , 2016, Physical Review X.

[28]  Juan Carrasquilla,et al.  Machine learning quantum phases of matter beyond the fermion sign problem , 2016, Scientific Reports.

[29]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[30]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[31]  M. Heyl,et al.  Dynamical quantum phase transitions in the transverse-field Ising model. , 2012, Physical review letters.

[32]  F. Verstraete,et al.  Time-dependent variational principle for quantum lattices. , 2011, Physical review letters.

[33]  F. Verstraete,et al.  Simulations Based on Matrix Product States and Projected Entangled Pair States , 2010 .

[34]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[35]  J. Cirac,et al.  Strong and weak thermalization of infinite nonintegrable quantum systems. , 2010, Physical review letters.

[36]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[37]  A. Green,et al.  Dynamics after a sweep through a quantum critical point. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Michael M. Wolf,et al.  Sequentially generated states for the study of two-dimensional systems , 2008, 0802.2472.

[39]  J. Cirac,et al.  Sequential generation of matrix-product states in cavity QED , 2006, quant-ph/0612101.

[40]  A. Sandvik Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions. , 2006, Physical review letters.

[41]  F. Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[42]  A. Schofield,et al.  Quantum criticality , 2005, Nature.

[43]  F. Verstraete,et al.  Sequential generation of entangled multiqubit states. , 2005, Physical review letters.

[44]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[45]  G. Biroli,et al.  Cluster dynamical mean field analysis of the mott transition. , 2003, Physical review letters.

[46]  Sachdev,et al.  Quantum criticality: competing ground states in low dimensions , 2000, Science.

[47]  M. Suzuki,et al.  Improved Trotter-like formula , 1993 .

[48]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[49]  John A. Hertz,et al.  Quantum critical phenomena , 1976 .

[50]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[51]  H. Trotter On the product of semi-groups of operators , 1959 .

[52]  H. Neven,et al.  Direct measurement of nonlocal interactions in the many-body localized phase , 2022 .

[53]  David J. Schwab,et al.  Supervised Learning with Tensor Networks , 2016, NIPS.

[54]  J. Charles,et al.  A Sino-German λ 6 cm polarization survey of the Galactic plane I . Survey strategy and results for the first survey region , 2006 .

[55]  S. Sachdev Competing Ground States in Low Dimensions , 2000 .

[56]  P. Murdin Pauli Exclusion Principle , 2000 .