The nature and fate of natural resins in the geosphere—II. Identification, classification and nomenclature of resinites

[1]  R. Winans,et al.  Nature and fate of natural resins in the geosphere. I: Evaluation of pyrolysis-gas chromatography/Mass spectrometry for the analysis of natural resins and resinites , 1991 .

[2]  H. Meuzelaar,et al.  Chemical structure and petrology of resinite from the Hiawatha "B" coal seam , 1991 .

[3]  B. Horsfield,et al.  A comparative study of three different pyrolysis methods used to characterise a biopolymer isolated from fossil and extant dammar resins , 1991 .

[4]  H. Meuzelaar,et al.  Chemical composition and origin of fossil resins from Utah Wasatch Plateau coal , 1991 .

[5]  Michael A. Wilson,et al.  Infrared spectroscopy of coal maceral concentrates at elevated temperatures , 1991 .

[6]  J. Challinor Structure determination of alkyd resins by simultaneous pyrolysis ethylation , 1991 .

[7]  R. Winans,et al.  Structure and structural diversity in resinites as determined by pyrolysis-gas chromatography-mass spectrometry , 1991 .

[8]  Jan D. Miller,et al.  Characterization of resin types from the Hiawatha seam of the Wasatch Plateau coal field , 1991 .

[9]  J. W. Leeuw,et al.  A cadinene biopolymer in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from South East Asia , 1990 .

[10]  R. Winans,et al.  Discussion of recent conclusions concerning the structure of Victorian brown coal resinite: a reply to the comments of Wilson et al. , 1990 .

[11]  G. Poinar,et al.  Analysis of North American amber by carbon‐13 NMR spectroscopy , 1990 .

[12]  P. Denning Stopping computer crimes , 1989 .

[13]  J. Challinor A pyrolysis-derivatisation-gas chromatography technique for the structural elucidation of some synthetic polymers , 1989 .

[14]  C. Welch,et al.  Analysis of Mexican Amber by Carbon-13 NMR Spectroscopy , 1989 .

[15]  Norbert S. Baer,et al.  Application of analytical pyrolysis to problems in art and archaeology: A review , 1989 .

[16]  D. Welte,et al.  Petroleum Formation and Occurrence , 1989 .

[17]  D. Grimaldi,et al.  Occurrence, chemical characteristics, and paleontology of the fossil resins from New Jersey. American Museum novitates ; ; no. 2948. , 1989 .

[18]  C. W. Beck,et al.  ANALYSIS OF EUROPEAN AMBER BY CARBON-13 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY , 1988 .

[19]  S. Teerman,et al.  Hydrocarbon characterization of resinite , 1988 .

[20]  R. Botto,et al.  Tetrakis (trimethylsilyl)silane, a suitable chemical-shift standard for solid-state NMR spectroscopy , 1988 .

[21]  Kopp,et al.  Characterization of a resinite maceral fraction , 1987 .

[22]  J. Mills 8 – Natural resins and lacquers , 1987 .

[23]  A. Okagawa,et al.  NMR study of beta-resene , 1987 .

[24]  N. S. Baer,et al.  The identification of dammar, mastic, sandarac and copals by pyrolysis gas chromatography , 1987 .

[25]  C. W. Beck Spectroscopic Investigations of Amber , 1986 .

[26]  G. Mustoe Eocene amber from the Pacific Coast of North America , 1985 .

[27]  G. Poinar,et al.  Use of pyrolysis mass spectrometry in the identification of amber samples , 1985 .

[28]  Joseph B. Lambert,et al.  AMBER FROM THE DOMINICAN REPUBLIC: ANALYSIS BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY , 1985 .

[29]  J. V. Dongen,et al.  Origin and structure of the fossil resin from an Indonesian Miocene coal , 1984 .

[30]  Raymond White,et al.  The chemical composition of Baltic amber , 1984 .

[31]  J. H. Langenheim,et al.  13C NMR and IR analyses of structure, aging and botanical origin of Dominican and Mexican ambers , 1983 .

[32]  J B Lambert,et al.  Carbon Functionalities in Amber , 1982, Science.

[33]  P. J. Grantham,et al.  The nature and origin of sesquiterpenoids in some tertiary fossil resins , 1980 .

[34]  M. Streibl,et al.  Chemical composition of cenomanian fossil resins from Moravia , 1976 .

[35]  E. Stach,et al.  Stach's Textbook of coal petrology , 1975 .

[36]  P. Broughton Conceptual Frameworks for Geographic-Botanical Affinities of Fossil Resins , 1974 .

[37]  J. H. Langenheim,et al.  Enantio-8(17),13(16),14-labdatrien-18-oic acid from trunk resin of kenyan Hymen aea verrucosa , 1974 .

[38]  J. Mills,et al.  The Composition of Succinite (Baltic Amber) , 1972, Nature.

[39]  H. Cheung,et al.  Constituents of Dipterocarpaceae Resins. IV. Triterpenes of Shorea acuminata and S. resina-nigra , 1972 .

[40]  H. Deeth,et al.  Diterpenoids. XXVI. A new diterpenoid acid from the oleoresin of callitris columellaris , 1971 .

[41]  D. Cowley,et al.  Diterpenoids: XXV. Dundathic acid and polycommunic acid , 1970 .

[42]  J. H. Langenheim Amber: a botanical inquiry. , 1969, Science.

[43]  B. R. Thomas Kauri Resins—Modern and Fossil , 1969 .

[44]  J. W. Frondel X-Ray Diffraction Study of Fossil Elemis , 1967, Nature.

[45]  J. W. Frondel X-Ray Diffraction Study of Some Fossil and Modern Resins , 1967, Science.

[46]  N. Dennis,et al.  Diterpenoids. X. cis- and trans-Biformene , 1967 .

[47]  C. Djerassi,et al.  The Chemistry of the Order Araucariales. Part 4. The Bled Resins of Agathis australis. , 1966 .

[48]  L. Gough Conifer resin constituents , 1965 .

[49]  C. W. Beck,et al.  Infrared Spectra as a Means of Determining Botanical Sources of Amber , 1965, Science.

[50]  C. W. Beck,et al.  THE INFRARED SPECTRA OF AMBER AND THE IDENTIFICATION OF BALTIC AMBER , 1965 .

[51]  T. Halsall,et al.  130. The chemistry of triterpenes and related compounds. Part XXXVIII. The acidic constituents of dammar resin , 1961 .

[52]  J. Mills 429. The constitution of the neutral, tetracyclic triterpenes of dammar resin , 1956 .

[53]  A. Werner,et al.  The chemistry of dammar resin , 1955 .

[54]  J. Paclt A system of caustolites , 1953 .