Open Research Online ExoMars TGO/NOMADUVIS vertical profiles of ozone: Part 2: The highaltitude layers of atmospheric ozone

Solar occultations performed by the Nadir and for MArs ultraviolet and visible spectrometer (UVIS) onboard the ExoMars Trace Gas Orbiter (TGO) have provided a comprehensive mapping of atmospheric ozone density. The observations here extend over a full Mars year (MY) between April 21, 2018 at the beginning of the TGO science operations during late northern summer on Mars (MY 34, L s = 163°) and March 9, 2020 (MY 35). UVIS provided transmittance spectra of the Martian atmosphere allowing measurements of the vertical distribution of ozone density using its Hartley absorption band (200–300 nm). The overall comparison to water vapor is found in the companion paper to this work (Patel et al., 2021, Our findings indicate the presence of (a) a high-altitude peak of ozone between 40 and 60 km in altitude over the north polar latitudes for at least 45% of the Martian year during midnorthern spring, late northern summer-early southern spring, and late southern summer, and (b) a second, but more prominent, high-altitude ozone peak in the south polar latitudes, lasting for at least 60% of the year including the southern autumn and winter seasons. When present, both high-altitude peaks are observed in the sunrise and sunset occultations, suggesting that the layers could persist during the day.

[1]  F. Daerden,et al.  ExoMars TGO/NOMAD‐UVIS Vertical Profiles of Ozone: 1. Seasonal Variation and Comparison to Water , 2021, Journal of Geophysical Research: Planets.

[2]  F. Lefévre,et al.  First detection of ozone in the mid-infrared at Mars: implications for methane detection , 2020, Astronomy & Astrophysics.

[3]  F. Daerden,et al.  Explanation for the Increase in High‐Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm , 2020, Geophysical Research Letters.

[4]  F. Daerden,et al.  Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD , 2019, Journal of Geophysical Research: Planets.

[5]  Michael D. Smith THEMIS Observations of the 2018 Mars Global Dust Storm , 2019, Journal of Geophysical Research: Planets.

[6]  F. Daerden,et al.  Mars atmospheric chemistry simulations with the GEM-Mars general circulation model , 2019, Icarus.

[7]  Scott D. Guzewich,et al.  Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm , 2018, Geophysical Research Letters.

[8]  M. Leese,et al.  NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance , 2018, Space Science Reviews.

[9]  F. Lefévre,et al.  MAVEN/IUVS Stellar Occultation Measurements of Mars Atmospheric Structure and Composition , 2018, Journal of Geophysical Research: Planets.

[10]  P. Hartogh,et al.  Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles , 2018, 2201.05086.

[11]  Lori Neary,et al.  The climatology of carbon monoxide and water vapor on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model , 2018 .

[12]  F. Daerden,et al.  The GEM-Mars general circulation model for Mars: Description and evaluation , 2018 .

[13]  Franck Lefèvre,et al.  Retrieving cloud, dust and ozone abundances in the Martian atmosphere using SPICAM/UV nadir spectra , 2017 .

[14]  Javier Cubas,et al.  NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2-design, manufacturing, and testing of the ultraviolet and visible channel. , 2017, Applied optics.

[15]  M. Malin,et al.  Daily Global Mapping of Mars Ozone Column Abundances with MARCI UV Band Imaging , 2016 .

[16]  Mark Leese,et al.  Optical and radiometric models of the NOMAD instrument part I: the UVIS channel. , 2015, Optics express.

[17]  D. Fussen,et al.  SPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere , 2015 .

[18]  F. Lefévre,et al.  Transport-driven formation of a polar ozone layer on Mars , 2013 .

[19]  Jean-Baptiste Madeleine,et al.  Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds , 2013, 1310.1010.

[20]  Craig B. Markwardt,et al.  Non-linear Least Squares Fitting in IDL with MPFIT , 2009, 0902.2850.

[21]  W. Ubachs,et al.  Deep-UV absorption and Rayleigh scattering of carbon dioxide , 2008 .

[22]  M. Malin,et al.  Climate, weather, and north polar observations from the Mars Reconnaissance Orbiter Mars Color Imager , 2008 .

[23]  F. Lefévre,et al.  Global distribution of total ozone on Mars from SPICAM/MEX UV measurements , 2006 .

[24]  Franck Lefèvre,et al.  Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations , 2006 .

[25]  D. Fussen,et al.  Stellar occultations observed by SPICAM on Mars Express , 2006 .

[26]  D. Buhl,et al.  Ozone abundance on Mars from infrared heterodyne spectra: I. Acquisition, retrieval, and anticorrelation with water vapor , 2006 .

[27]  Franck Lefèvre,et al.  Three-dimensional modeling of ozone on Mars , 2004 .

[28]  Liisa Oikarinen,et al.  Inversion algorithms for recovering minor species densities from limb scatter measurements at UV‐visible wavelengths , 2002 .

[29]  M. DiSanti,et al.  Mapping of ozone and water in the atmosphere of Mars near the 1997 aphelion , 2002 .

[30]  Robert M. Haberle,et al.  Mars Color Imager (MARCI) on the Mars Climate Orbiter , 1999 .

[31]  R. Clancy,et al.  Annual (perihelion-aphelion) cycles in the photochemical behavior of the global Mars atmosphere , 1996 .

[32]  R. Clancy,et al.  Mars ozone measurements near the 1995 aphelion: Hubble space telescope ultraviolet spectroscopy with the faint object spectrograph , 1996 .

[33]  J. Blamont,et al.  First Detection of Ozone in the Middle Atmosphere of Mars from Solar Occultation Measurements , 1992 .

[34]  F. Espenak,et al.  Ground-based infrared measurements of the global distribution of ozone in the atmosphere of Mars , 1988 .

[35]  W. Traub,et al.  Detection of O2 dayglow emission from Mars and the Martian ozone abundance , 1976 .

[36]  G. Anderson,et al.  Mariner 9 Ultraviolet Spectrometer Experiment: Seasonal Variation of Ozone on Mars , 1973, Science.

[37]  A. Lane,et al.  Mariner 9 Ultraviolet Spectrometer Experiment: Initial Results , 1972, Science.

[38]  C. Hord,et al.  Mariner Ultraviolet Spectrometer: Topography and Polar Cap , 1971, Science.

[39]  F. Daerden,et al.  Impact of gradients at the martian terminator on the retrieval of ozone from SPICAM/MEx , 2021 .

[40]  F. Forget,et al.  THE MARTIAN OZONE LAYER AS SEEN BY SPICAM/MARS-EXPRESS , 2007 .