The SPHINX Cosmological Simulations of the First Billion Years: the Impact of Binary Stars on Reionization★

We present the SPHINX suite of cosmological adaptive mesh refinement simulations, the first radiation-hydrodynamical simulations to simultaneously capture large-scale reionization and the escape of ionizing radiation from thousands of resolved galaxies. Our $5$ and $10$ co-moving Mpc volumes resolve haloes down to the atomic cooling limit and model the inter-stellar medium with better than $\approx10$ pc resolution. The project has numerous goals in improving our understanding of reionization and making predictions for future observations. In this first paper we study how the inclusion of binary stars in computing stellar luminosities impacts reionization, compared to a model that includes only single stars. Owing to the suppression of galaxy growth via strong feedback, our galaxies are in good agreement with observational estimates of the galaxy luminosity function. We find that binaries have a significant impact on the timing of reionization: with binaries, our boxes are $99.9$ percent ionized by volume at $z\approx 7$, while without them our volumes fail to reionize by $z=6$. These results are robust to changes in volume size, resolution, and feedback efficiency. The escape of ionizing radiation from individual galaxies varies strongly and frequently. On average, binaries lead to escape fractions of $\approx 7-10$ percent, about $3.5$ times higher than with single stars only. The higher escape fraction is a result of a shallower decline in ionizing luminosity with age, and is the primary reason for earlier reionization, although the higher integrated luminosity with binaries also plays a sub-dominant role.

[1]  D. Aubert,et al.  Impact of the reduced speed of light approximation on the post-overlap neutral hydrogen fraction in numerical simulations of the epoch of reionization , 2018, Astronomy & Astrophysics.

[2]  D. Sijacki,et al.  A Census of the LyC photons that form the UV background during reionization , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  R. Teyssier,et al.  Impact of Lyman alpha pressure on metal-poor dwarf galaxies , 2018, 1801.04952.

[4]  K. Shimasaku,et al.  SILVERRUSH. VI. A simulation of Lyα emitters in the reionization epoch and a comparison with Subaru Hyper Suprime-Cam survey early data , 2017, 1801.00067.

[5]  Y. Dubois,et al.  Escape of ionizing radiation from high-redshift dwarf galaxies: role of AGN feedback , 2017, Monthly Notices of the Royal Astronomical Society.

[6]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[7]  J. Devriendt,et al.  Gas flows in the circumgalactic medium around simulated high-redshift galaxies , 2017, 1710.03765.

[8]  M. Norman,et al.  Fully Coupled Simulation of Cosmic Reionization. III. Stochastic Early Reionization by the Smallest Galaxies , 2017, The Astrophysical Journal.

[9]  T. Nagao,et al.  Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of ∼2000 Lyα emitters at z = 6–7 over the 0.3–0.5 Gpc2 survey area , 2017, 1704.07455.

[10]  Satoshi Miyazaki,et al.  GOLDRUSH - II. Clustering of galaxies at z ∼ 4–6 revealed with the half-million dropouts over the 100 deg2 area corresponding to 1 Gpc3 , 2017, 1704.06535.

[11]  Berkeley,et al.  Simulating galaxies in the reionization era with FIRE-2: galaxy scaling relations, stellar mass functions, and luminosity functions , 2017, 1706.06605.

[12]  J. Devriendt,et al.  Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies , 2017, 1705.00941.

[13]  J. Dunlop,et al.  No evidence for a significant AGN contribution to cosmic hydrogen reionization , 2017, 1704.07750.

[14]  P. Hopkins,et al.  The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations , 2016, 1610.08523.

[15]  R. Teyssier,et al.  Snap, Crackle, Pop: sub-grid supernova feedback in AMR simulations of disc galaxies , 2016, 1609.01296.

[16]  A. Loeb,et al.  Lyman α radiation hydrodynamics of galactic winds before cosmic reionization , 2016, 1607.07166.

[17]  H. Trac,et al.  On the contribution of active galactic nuclei to the high-redshift metagalactic ionizing background , 2016, 1607.06467.

[18]  J. Read,et al.  The stellar mass-halo mass relation of isolated field dwarfs : a critical test of ΛCDM at the edge of galaxy formation , 2016, 1607.03127.

[19]  E. Puchwein,et al.  Large scale opacity fluctuations in the Lyman alpha forest: evidence for QSOs dominating the ionising UV background at z ~ 5.5-6 ? , 2016, 1606.08231.

[20]  R. Klessen,et al.  The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae , 2016, 1606.05346.

[21]  J. Schaye,et al.  The Aurora radiation-hydrodynamical simulations of reionization: calibration and first results. , 2016, 1603.00034.

[22]  D. Sijacki,et al.  Interpreting ALMA Observations of the ISM During the Epoch of Reionisation , 2016, 1612.01786.

[23]  F. Davies,et al.  Large fluctuations in the high-redshift metagalactic ionizing background , 2016, 1611.02711.

[24]  R. Bouwens,et al.  The z ∼ 6 Luminosity Function Fainter than −15 mag from the Hubble Frontier Fields: The Impact of Magnification Uncertainties , 2016, 1610.00283.

[25]  N. Gnedin ON THE PROPER USE OF THE REDUCED SPEED OF LIGHT APPROXIMATION , 2016, 1607.07869.

[26]  B. O’Shea,et al.  GALAXY PROPERTIES AND UV ESCAPE FRACTIONS DURING THE EPOCH OF REIONIZATION: RESULTS FROM THE RENAISSANCE SIMULATIONS , 2016, 1604.07842.

[27]  S. Finkelstein,et al.  Directly Observing the Galaxies Likely Responsible for Reionization , 2016, 1604.06799.

[28]  Northwestern,et al.  Binary stars can provide the `missing photons' needed for reionization , 2016, 1601.07559.

[29]  E. Stanway,et al.  Stellar population effects on the inferred photon density at reionization , 2015, 1511.03268.

[30]  R. Teyssier,et al.  Cosmic Dawn (CoDa): the first radiation-hydrodynamics simulation of reionization and galaxy formation in the Local Universe , 2015, 1511.00011.

[31]  A. Mesinger,et al.  The clustering of Lyman α emitters at z ≈ 7: implications for reionization and host halo masses , 2015 .

[32]  R. Cen,et al.  FORMATION OF GLOBULAR CLUSTERS IN ATOMIC-COOLING HALOS VIA RAPID GAS CONDENSATION AND FRAGMENTATION DURING THE EPOCH OF REIONIZATION , 2015, 1510.05671.

[33]  J. Devriendt,et al.  A Detailed Study of Feedback from a Massive Star , 2014, 1412.0484.

[34]  R. Teyssier,et al.  A scheme for radiation pressure and photon diffusion with the M1 closure in ramses-rt , 2014, 1411.6440.

[35]  E. Quataert,et al.  Supernova feedback in an inhomogeneous interstellar medium , 2014, 1409.4425.

[36]  E. Ostriker,et al.  MOMENTUM INJECTION BY SUPERNOVAE IN THE INTERSTELLAR MEDIUM , 2014, 1410.1537.

[37]  R. Cen,et al.  ESCAPE FRACTION OF IONIZING PHOTONS DURING REIONIZATION: EFFECTS DUE TO SUPERNOVA FEEDBACK AND RUNAWAY OB STARS , 2014, 1405.0552.

[38]  M. Norman,et al.  The birth of a galaxy – III. Propelling reionization with the faintest galaxies , 2014, 1403.6123.

[39]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[40]  N. Gnedin,et al.  COSMIC REIONIZATION ON COMPUTERS. II. REIONIZATION HISTORY AND ITS BACK-REACTION ON EARLY GALAXIES , 2014, 1403.4251.

[41]  N. Gnedin COSMIC REIONIZATION ON COMPUTERS. I. DESIGN AND CALIBRATION OF SIMULATIONS , 2014, 1403.4245.

[42]  M. Norman,et al.  FULLY COUPLED SIMULATION OF COSMIC REIONIZATION. II. RECOMBINATIONS, CLUMPING FACTORS, AND THE PHOTON BUDGET FOR REIONIZATION , 2013, 1311.2152.

[43]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[44]  P. Shapiro,et al.  Simulating cosmic reionization: how large a volume is large enough? , 2013, 1310.7463.

[45]  Judith G. Cohen,et al.  THE UNIVERSAL STELLAR MASS–STELLAR METALLICITY RELATION FOR DWARF GALAXIES , 2013, 1310.0814.

[46]  R. Teyssier,et al.  ramses-rt: radiation hydrodynamics in the cosmological context , 2013, Monthly Notices of the Royal Astronomical Society.

[47]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[48]  Z. Haiman,et al.  Evidence of Gunn–Peterson damping wings in high-z quasar spectra: strengthening the case for incomplete reionization at z ∼ 6–7 , 2012, 1204.2838.

[49]  R. Klessen,et al.  THE STAR FORMATION RATE OF TURBULENT MAGNETIZED CLOUDS: COMPARING THEORY, SIMULATIONS, AND OBSERVATIONS , 2012, 1209.2856.

[50]  M. Kuhlen,et al.  Concordance models of reionization: implications for faint galaxies and escape fraction evolution , 2012, 1201.0757.

[51]  P. Hopkins,et al.  Stellar Feedback in Galaxies and the Origin of Galaxy-scale Winds , 2011, 1110.4638.

[52]  R. Davé,et al.  GALACTIC OUTFLOWS AND PHOTOIONIZATION HEATING IN THE REIONIZATION EPOCH , 2011, 1106.4321.

[53]  Romain Teyssier,et al.  A simple multigrid scheme for solving the Poisson equation with arbitrary domain boundaries , 2011, J. Comput. Phys..

[54]  Oliver Hahn,et al.  Multi-scale initial conditions for cosmological simulations , 2011, 1103.6031.

[55]  Melbourne.,et al.  Measurements of the UV background at 4.6 < z < 6.4 using the quasar proximity effect , 2010, 1011.5850.

[56]  J. Bolton,et al.  Near-zone sizes and the rest-frame extreme ultraviolet spectral index of the highest redshift quasars , 2010, 1008.1107.

[57]  C. Conselice,et al.  A SPECTROSCOPIC SEARCH FOR LEAKING LYMAN CONTINUUM AT z ∼ 0.7 , 2010, 1008.0004.

[58]  C. Conselice,et al.  A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z ∼ 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY , 2010, 1001.3412.

[59]  L. Trouille,et al.  MEASURING THE SOURCES OF THE INTERGALACTIC IONIZING FLUX , 2008, 0811.1042.

[60]  Christopher A. Tout,et al.  The Effect of Massive Binaries on Stellar Populations and Supernova Progenitors , 2007, Proceedings of the International Astronomical Union.

[61]  E. Quataert,et al.  Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling , 2005, astro-ph/0503027.

[62]  J. Blondin,et al.  Transition to the Radiative Phase in Supernova Remnants , 1998 .

[63]  M. Steinmetz,et al.  Energy Input and Mass Redistribution by Supernovae in the Interstellar Medium , 1997, astro-ph/9706175.

[64]  D. A. Verner,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996 .

[65]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[66]  J. Bregman,et al.  Global Models of the Interstellar Medium in Disk Galaxies , 1995 .

[67]  J. Shull,et al.  X-ray secondary heating and ionization in quasar emission-line clouds , 1985 .

[68]  C. D. Levermore,et al.  Relating Eddington factors to flux limiters , 1984 .

[69]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .