Survival Prediction of Glioma Tumors Using Feature Selection and Linear Regression

[1]  Junlin Yang,et al.  Automatic Brain Tumor Segmentation with Contour Aware Residual Network and Adversarial Training , 2018, BrainLes@MICCAI.

[2]  Christos Davatzikos,et al.  Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features , 2017, Scientific Data.

[3]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[4]  R. Mirimanoff,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[5]  Li Sun,et al.  Tumor Segmentation and Survival Prediction in Glioma with Deep Learning , 2018, BrainLes@MICCAI.

[6]  Kewei Cheng,et al.  Feature Selection , 2016, ACM Comput. Surv..

[7]  Brian C. Ross Mutual Information between Discrete and Continuous Data Sets , 2014, PloS one.

[8]  Andre Dekker,et al.  Radiomics: the process and the challenges. , 2012, Magnetic resonance imaging.

[9]  J. Gregory Pauloski,et al.  Glioma Segmentation and a Simple Accurate Model for Overall Survival Prediction , 2018, BrainLes@MICCAI.

[10]  et al.,et al.  Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge , 2018, ArXiv.

[11]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[12]  Klaus H. Maier-Hein,et al.  No New-Net , 2018, 1809.10483.

[13]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Nicholas J. Tustison,et al.  Brain Tumor Segmentation Using an Ensemble of 3D U-Nets and Overall Survival Prediction Using Radiomic Features , 2018, Frontiers in Computational Neuroscience.

[15]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.