Accurate Corresponding Fiber Tract Segmentation via FiberGeoMap Learner

[1]  Yong He,et al.  Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: A review , 2021, NeuroImage.

[2]  Hans J. Johnson,et al.  Advanced Normalization Tools (ANTs) , 2020 .

[3]  R. Reddy,et al.  Genetics of structural and functional brain changes in autism spectrum disorder , 2020, Translational Psychiatry.

[4]  C. Poupon,et al.  FFClust: Fast fiber clustering for large tractography datasets for a detailed study of brain connectivity , 2020, NeuroImage.

[5]  Alexandra J. Golby,et al.  Deep white matter analysis (DeepWMA): Fast and consistent tractography segmentation , 2020, Medical Image Anal..

[6]  Ahmad R. Hariri,et al.  What is the Test-Retest Reliability of Common Task-fMRI Measures? New Empirical Evidence and a Meta-Analysis , 2019, Biological Psychiatry.

[7]  Mark Jenkinson,et al.  High resolution nonlinear registration with simultaneous modelling of intensities , 2019, bioRxiv.

[8]  Peter F. Neher,et al.  Combined tract segmentation and orientation mapping for bundle-specific tractography , 2019, Medical Image Anal..

[9]  A. Connelly,et al.  Reduced White Matter Fiber Density in Autism Spectrum Disorder , 2019, Cerebral cortex.

[10]  Yogesh Rathi,et al.  An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan , 2018, NeuroImage.

[11]  Gillian Baird,et al.  Autism spectrum disorder , 2018, The Lancet.

[12]  Peter F. Neher,et al.  TractSeg - Fast and accurate white matter tract segmentation , 2018, NeuroImage.

[13]  S. Scherer,et al.  Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling , 2018, Molecular Psychiatry.

[14]  Carl-Fredrik Westin,et al.  SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research. , 2017, Cancer research.

[15]  Maxime Descoteaux,et al.  Recognition of white matter bundles using local and global streamline-based registration and clustering , 2017, NeuroImage.

[16]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[17]  Yogesh Rathi,et al.  Joint Multi-Fiber NODDI Parameter Estimation and Tractography Using the Unscented Information Filter , 2016, Front. Neurosci..

[18]  Chase C. Dougherty,et al.  A Comparison of Structural Brain Imaging Findings in Autism Spectrum Disorder and Attention-Deficit Hyperactivity Disorder , 2016, Neuropsychology Review.

[19]  John Suckling,et al.  Frontal networks in adults with autism spectrum disorder , 2016, Brain : a journal of neurology.

[20]  Carl-Fredrik Westin,et al.  The white matter query language: a novel approach for describing human white matter anatomy , 2015, Brain Structure and Function.

[21]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[22]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[23]  Wiepke Cahn,et al.  Altered white matter connectivity in never‐medicated patients with schizophrenia , 2013, Human brain mapping.

[24]  D. Skuse,et al.  White matter microstructure correlates with autism trait severity in a combined clinical–control sample of high-functioning adults , 2013, NeuroImage: Clinical.

[25]  Daniel P. Kennedy,et al.  The Autism Brain Imaging Data Exchange: Towards Large-Scale Evaluation of the Intrinsic Brain Architecture in Autism , 2013, Molecular Psychiatry.

[26]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[27]  Alan Connelly,et al.  Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information , 2012, NeuroImage.

[28]  Jason P. Lerch,et al.  Neurexin-1 and Frontal Lobe White Matter: An Overlapping Intermediate Phenotype for Schizophrenia and Autism Spectrum Disorders , 2011, PloS one.

[29]  W. Eric L. Grimson,et al.  Tractography segmentation using a hierarchical Dirichlet processes mixture model , 2011, NeuroImage.

[30]  Martha Elizabeth Shenton,et al.  Filtered Multitensor Tractography , 2010, IEEE Transactions on Medical Imaging.

[31]  L. Zollei,et al.  A combined fMRI and DTI examination of functional language lateralization and arcuate fasciculus structure: Effects of degree versus direction of hand preference , 2010, Brain and Cognition.

[32]  Rachid Deriche,et al.  Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers , 2010, NeuroImage.

[33]  Teresa K. W. Wong,et al.  White matter fractional anisotrophy differences and correlates of diagnostic symptoms in autism. , 2009, Journal of child psychology and psychiatry, and allied disciplines.

[34]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[35]  Declan G. M. Murphy,et al.  Altered cerebellar feedback projections in Asperger syndrome , 2008, NeuroImage.

[36]  R. Fields White matter matters. , 2008, Scientific American.

[37]  Talma Hendler,et al.  Accelerated maturation of white matter in young children with autism: A high b value DWI study , 2007, NeuroImage.

[38]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[39]  Geraldine Dawson,et al.  Gray and white matter brain chemistry in young children with autism. , 2006, Archives of general psychiatry.

[40]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[41]  A. Anderson,et al.  Classification and quantification of neuronal fiber pathways using diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[42]  Dinggang Shen,et al.  HAMMER: hierarchical attribute matching mechanism for elastic registration , 2002, IEEE Transactions on Medical Imaging.

[43]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[44]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[45]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[46]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[47]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[48]  N. Makris,et al.  DFC: Anatomically Informed Fiber Clustering with Self-supervised Deep Learning for Fast and Effective Tractography Parcellation , 2022, ArXiv.

[49]  Kesshi M Jordan,et al.  Cluster Confidence Index: A Streamline‐Wise Pathway Reproducibility Metric for Diffusion‐Weighted MRI Tractography , 2018, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[50]  Tuo Zhang,et al.  Resting State fMRI-guided Fiber Clustering: Methods and Applications , 2012, Neuroinformatics.

[51]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.