pROST : A Smoothed Lp-norm Robust Online Subspace Tracking Method for Realtime Background Subtraction in Video

An increasing number of methods for background subtraction use Robust PCA to identify sparse foreground objects. While many algorithms use the L1-norm as a convex relaxation of the ideal sparsifying function, we approach the problem with a smoothed Lp-norm and present pROST, a method for robust online subspace tracking. The algorithm is based on alternating minimization on manifolds. Implemented on a graphics processing unit it achieves realtime performance. Experimental results on a state-of-the-art benchmark for background subtraction on real-world video data indicate that the method succeeds at a broad variety of background subtraction scenarios, and it outperforms competing approaches when video quality is deteriorated by camera jitter.

[1]  Martin Kleinsteuber,et al.  Robust PCA and subspace tracking from incomplete observations using $$\ell _0$$ℓ0-surrogates , 2012, Comput. Stat..

[2]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[3]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[4]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[5]  Pengfei Shi,et al.  An Eigenbackground Subtraction Method Using Recursive Error Compensation , 2006, PCM.

[6]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Hamid Hassanpour,et al.  Video Frame's Background Modeling: Reviewing the Techniques , 2011, J. Signal Inf. Process..

[8]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[9]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[10]  Aswin C. Sankaranarayanan,et al.  SpaRCS: Recovering low-rank and sparse matrices from compressive measurements , 2011, NIPS.

[11]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[12]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[13]  Shireen Elhabian,et al.  Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art , 2008 .

[14]  Thierry Bouwmans,et al.  Subspace Learning for Background Modeling: A Survey , 2009 .

[15]  Pierre-Antoine Absil,et al.  RTRMC: A Riemannian trust-region method for low-rank matrix completion , 2011, NIPS.

[16]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[17]  Laura Balzano,et al.  Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[19]  Yongmin Li,et al.  On incremental and robust subspace learning , 2004, Pattern Recognit..

[20]  Benjamin Höferlin,et al.  Evaluation of background subtraction techniques for video surveillance , 2011, CVPR 2011.

[21]  Stéphane Canu,et al.  Recovering Sparse Signals With a Certain Family of Nonconvex Penalties and DC Programming , 2009, IEEE Transactions on Signal Processing.

[22]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[23]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[24]  Charles Guyon,et al.  Robust Principal Component Analysis for Background Subtraction: Systematic Evaluation and Comparative Analysis , 2012 .