Addressing the New Item problem in video recommender systems by incorporation of visual features with restricted Boltzmann machines

[1]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[2]  Lior Rokach,et al.  Recommender Systems Handbook , 2010 .

[3]  Alfredo Cuzzocrea Semantics Meets Big Data: Formal Models, Practical Issues, Novel Paradigms , 2015, Journal on Data Semantics.

[4]  Reinhard Heckel,et al.  Addressing Interpretability and Cold-Start in Matrix Factorization for Recommender Systems , 2019, IEEE Transactions on Knowledge and Data Engineering.

[5]  Christoph Trattner,et al.  Exploring the Power of Visual Features for the Recommendation of Movies , 2019, UMAP.

[6]  Alejandro Bellogín,et al.  Content-based recommendation in social tagging systems , 2010, RecSys '10.

[7]  Michael J. Pazzani,et al.  A hybrid user model for news story classification , 1999 .

[8]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[9]  Francesco Ricci,et al.  A Research Tool for User Preferences Elicitation with Facial Expressions , 2017, RecSys.

[10]  Aditya Khamparia,et al.  A systematic review on deep learning architectures and applications , 2019, Expert Syst. J. Knowl. Eng..

[11]  Stathes Hadjiefthymiades,et al.  Facing the cold start problem in recommender systems , 2014, Expert Syst. Appl..

[12]  João Gama,et al.  Online bagging for recommender systems , 2018, Expert Syst. J. Knowl. Eng..

[13]  Peter Brusilovsky,et al.  Open user profiles for adaptive news systems: help or harm? , 2007, WWW '07.

[14]  Olga C. Santos,et al.  User‐centred design and educational data mining support during the recommendations elicitation process in social online learning environments , 2015, Expert Syst. J. Knowl. Eng..

[15]  Pasquale Lops,et al.  Enhanced semantic TV-show representation for personalized electronic program guides , 2012, UMAP.

[16]  Carlo Strapparava,et al.  Improving User Modelling with Content-Based Techniques , 2001, User Modeling.

[17]  Lars Schmidt-Thieme,et al.  A supervised active learning framework for recommender systems based on decision trees , 2015, User Modeling and User-Adapted Interaction.

[18]  Markus Schedl,et al.  Movie Genome Recommender: A Novel Recommender System Based on Multimedia Content , 2019, 2019 International Conference on Content-Based Multimedia Indexing (CBMI).

[19]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[20]  Farshad Bakhshandegan Moghaddam,et al.  Visually-Aware Video Recommendation in the Cold Start , 2020, HT.

[21]  B. S. Manjunath,et al.  A texture thesaurus for browsing large aerial photographs , 1998 .

[22]  Saman Haratizadeh,et al.  Entity representation for pairwise collaborative ranking using restricted Boltzmann machine , 2019, Expert Syst. Appl..

[23]  Huseyin Polat,et al.  A new hybrid recommendation algorithm with privacy , 2010, Expert Syst. J. Knowl. Eng..

[24]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[25]  Paolo Cremonesi,et al.  Using visual features based on MPEG-7 and deep learning for movie recommendation , 2018, International Journal of Multimedia Information Retrieval.

[26]  Tammam Tillo,et al.  Optical Flow Estimation with Deep Learning, a Survey on Recent Advances , 2020, Deep Biometrics.

[27]  Yan Chen,et al.  Intelligent Fashion Recommender System: Fuzzy Logic in Personalized Garment Design , 2015, IEEE Transactions on Human-Machine Systems.

[28]  Tao Mei,et al.  Online video recommendation based on multimodal fusion and relevance feedback , 2007, CIVR '07.

[29]  Michael J. Pazzani,et al.  Content-Based Recommendation Systems , 2007, The Adaptive Web.

[30]  Pasquale Lops,et al.  A content-collaborative recommender that exploits WordNet-based user profiles for neighborhood formation , 2007, User Modeling and User-Adapted Interaction.

[31]  Pasquale Lops,et al.  Integrating tags in a semantic content-based recommender , 2008, RecSys '08.

[32]  Francesco Ricci,et al.  A survey of active learning in collaborative filtering recommender systems , 2016, Comput. Sci. Rev..

[33]  Bamshad Mobasher,et al.  Personalized recommendation in social tagging systems using hierarchical clustering , 2008, RecSys '08.

[34]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[35]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[36]  Steffen Rendle,et al.  Factorization Machines with libFM , 2012, TIST.

[37]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[38]  Iraklis Varlamis,et al.  SEWeP: using site semantics and a taxonomy to enhance the Web personalization process , 2003, KDD '03.

[39]  Rasoul Karimi,et al.  Active Learning for Recommender Systems , 2015, KI - Künstliche Intelligenz.

[40]  Pragya Dwivedi,et al.  e‐Learning recommender system for a group of learners based on the unified learner profile approach , 2015, Expert Syst. J. Knowl. Eng..

[41]  Paolo Cremonesi,et al.  Using Mise-En-Scène Visual Features based on MPEG-7 and Deep Learning for Movie Recommendation , 2017, ArXiv.

[42]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[43]  Paolo Cremonesi,et al.  Exploring the Semantic Gap for Movie Recommendations , 2017, RecSys.

[44]  Farshad Bakhshandegan Moghaddam,et al.  Predicting Movie Popularity and Ratings with Visual Features , 2019, 2019 14th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP).

[45]  Franca Garzotto,et al.  Toward Effective Movie Recommendations Based on Mise-en-Scène Film Styles , 2015, CHItaly.

[46]  Francesco Ricci,et al.  Active learning strategies for rating elicitation in collaborative filtering , 2013, ACM Trans. Intell. Syst. Technol..

[47]  Xiangyang Wang,et al.  Content-based image retrieval by integrating color and texture features , 2012, Multimedia Tools and Applications.

[48]  Pasquale Lops,et al.  Content-based Recommender Systems: State of the Art and Trends , 2011, Recommender Systems Handbook.

[49]  B. S. Manjunath,et al.  Rotation-invariant texture classification using a complete space-frequency model , 1999, IEEE Trans. Image Process..

[50]  F. Maxwell Harper,et al.  The MovieLens Datasets: History and Context , 2016, TIIS.

[51]  FATIH GEDIKLI,et al.  Improving recommendation accuracy based on item-specific tag preferences , 2013, TIST.

[52]  Francesco Ricci,et al.  User Preference Elicitation, Rating Sparsity and Cold Start , 2018, Collaborative Recommendations.

[53]  Paolo Cremonesi,et al.  Toward Building a Content-Based Video Recommendation System Based on Low-Level Features , 2015, EC-Web.

[54]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.

[55]  Charu C. Aggarwal,et al.  Content-Based Recommender Systems , 2016 .

[56]  Francesco Ricci,et al.  Prediction of music pairwise preferences from facial expressions , 2019, IUI.

[57]  Franca Garzotto,et al.  Content-Based Video Recommendation System Based on Stylistic Visual Features , 2016, Journal on Data Semantics.

[58]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[59]  Pasquale Lops,et al.  Content-based and collaborative techniques for tag recommendation: an empirical evaluation , 2012, Journal of Intelligent Information Systems.

[60]  Ebru Arisoy,et al.  Low-rank matrix factorization for Deep Neural Network training with high-dimensional output targets , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[61]  Alexandros Nanopoulos,et al.  Social tagging in recommender systems: a survey of the state-of-the-art and possible extensions , 2010, Artificial Intelligence Review.

[62]  Franca Garzotto,et al.  Recommending Movies Based on Mise-en-Scene Design , 2016, CHI Extended Abstracts.

[63]  Stuart E. Middleton,et al.  Ontological user profiling in recommender systems , 2004, TOIS.

[64]  Lior Rokach,et al.  Recommender Systems: Introduction and Challenges , 2015, Recommender Systems Handbook.

[65]  Riccardo Leonardi,et al.  Affective Recommendation of Movies Based on Selected Connotative Features , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[66]  Markus Zanker,et al.  Linked open data to support content-based recommender systems , 2012, I-SEMANTICS '12.

[67]  Jussara M. Almeida,et al.  On cold start for associative tag recommendation , 2016, J. Assoc. Inf. Sci. Technol..

[68]  Mark F. Hornick,et al.  Extending Recommender Systems for Disjoint User/Item Sets: The Conference Recommendation Problem , 2012, IEEE Transactions on Knowledge and Data Engineering.

[69]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[70]  Zhoujun Li,et al.  Integrating rich information for video recommendation with multi-task rank aggregation , 2011, ACM Multimedia.

[71]  Ayman Mansour,et al.  An efficient hybrid similarity measure based on user interests for recommender systems , 2019, Expert Syst. J. Knowl. Eng..

[72]  Ioannis Konstas,et al.  Categorising social tags to improve folksonomy-based recommendations , 2011, J. Web Semant..

[73]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[74]  Charu C. Aggarwal,et al.  An Introduction to Recommender Systems , 2016 .

[75]  Preslav Nakov,et al.  A non-IID Framework for Collaborative Filtering with Restricted Boltzmann Machines , 2013, ICML.

[76]  Xiang Cheng,et al.  Exploiting organizer influence and geographical preference for new event recommendation , 2017, Expert Syst. J. Knowl. Eng..

[77]  Joseph M. Hellerstein,et al.  Distributed GraphLab: A Framework for Machine Learning in the Cloud , 2012, Proc. VLDB Endow..

[78]  Michael J. Pazzani,et al.  User Modeling for Adaptive News Access , 2000, User Modeling and User-Adapted Interaction.

[79]  Giorgos Siantikos,et al.  Discovering Similarities for Content-Based Recommendation and Browsing in Multimedia Collections , 2014, 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems.