How Reproducible are Surface Areas Calculated from the BET Equation?

Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer–Emmett–Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro‐ and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already‐measured raw adsorption isotherms were provided to sixty‐one labs, who were asked to calculate the corresponding BET areas. This round‐robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called “BET surface identification” (BETSI), expands on the well‐known Rouquerol criteria and makes an unambiguous BET area assignment possible.

Ryan P. Lively | Peyman Z. Moghadam | Yamil J. Colón | Encarna Sosa Sánchez | M. A. van der Veen | Krista S. Walton | Seth M. Cohen | M. Allendorf | R. Clowes | D. Sholl | François-Xavier Coudert | O. Farha | R. Snurr | C. Serre | D. D’Alessandro | V. Stavila | S. Wuttke | B. Coasne | D. Azevedo | R. Thyagarajan | S. Kitagawa | D. Siderius | R. B. Goncalves | M. Dincǎ | B. Lotsch | R. Ameloot | X. Bu | M. Hill | K. Kaneko | Banglin Chen | P. Feng | J. García‐Martínez | C. Ania | O. Yaghi | N. Linares | J. A. Suárez | E. Vilarrasa-García | C. Yavuz | P. Llewellyn | Hong‐Cai Zhou | M. Sadiq | C. Doonan | P. Falcaro | Georges Mouchaham | D. Madden | J. Navarro | D. Fairen-jimenez | P. Moghadam | P. Wheatley | R. Morris | C. Montoro | S. Furukawa | Sihai Yang | N. Champness | Linjiang Chen | D. Maspoch | M. Rosseinsky | R. Riccò | V. Ting | P. Horcajada | T. Nguyen | Jorge Gascón | S. L. Griffin | Timur Islamoglu | F. Zamora | S. Keskin | C. Martı́-Gastaldo | Jacopo Andreo | D. Danaci | Ken‐ichi Otake | H. Bunzen | Huajun Yang | J. Marreiros | Chenyue Sun | M. Schroder | Bingqi Zhang | Karam B. Idrees | S. Telalović | Radovan Kukobat | J. C. Moreton | Michael T. Huxley | Jemma L. Rowlandson | A. Katsoulidis | Natalia Muñoz | P. Salcedo-Abraira | Soumya Mukherjee | Nakul Rampal | B. Connolly | A. Lamaire | Xue Han | Rui‐Biao Lin | Johannes W. M. Osterrieth | Patrick W. Doheny | Ross S. Forgan | J. Evans | J. Kenvin | S. Emmerling | R. Oktavian | Takeshi Uemura | James Rampersad | L. Skoric | J. Snider | Bianca F Santos | X. Zang | Yong Cui | Bang Hou | D. Bara | Sujit K. Ghosha | Stephen J. A. DeWitt | A. Pütz | Camille Petit | Tomoya Iiyuka | D. Rega | Veronique Vanspeybroeck | S. Rogge | Lukas W. Bingel | Kirchon Angelo | C. Petit | João Marreiros | David G. Madden | C. Martí‐Gastaldo | G. Mouchaham | Hong‐Cai Zhou | Rob Clowes | Hongcai Zhou | M. Huxley | Bianca F. Santos | Carlos Martí‐Gastaldo | Sven M. J. Rogge | Pablo Salcedo-Abraira

[1]  Diego A. Gómez-Gualdrón,et al.  Balancing volumetric and gravimetric uptake in highly porous materials for clean energy , 2020, Science.

[2]  Rebecca Han,et al.  Does repeat synthesis in materials chemistry obey a power law? , 2019, Proceedings of the National Academy of Sciences.

[3]  Yongchul G. Chung,et al.  Surface Area Determination of Porous Materials Using the Brunauer–Emmett–Teller (BET) Method: Limitations and Improvements , 2019, The Journal of Physical Chemistry C.

[4]  S. Kaskel,et al.  Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. , 2018, Angewandte Chemie.

[5]  Thomas J. Macdonald,et al.  Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs , 2018, Small Methods.

[6]  Peyman Z. Moghadam,et al.  Computer-aided discovery of a metal–organic framework with superior oxygen uptake , 2018, Nature Communications.

[7]  David S. Sholl,et al.  How Reproducible Are Isotherm Measurements in Metal–Organic Frameworks? , 2017 .

[8]  Peter J. Gurry Limitations and Improvements , 2017 .

[9]  Peyman Z. Moghadam,et al.  Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future , 2017 .

[10]  O. Yaghi,et al.  The atom, the molecule, and the covalent organic framework , 2017, Science.

[11]  O. Yaghi Reticular Chemistry-Construction, Properties, and Precision Reactions of Frameworks. , 2016, Journal of the American Chemical Society.

[12]  Diego A. Gómez-Gualdrón,et al.  Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal-Organic Frameworks. , 2016, Journal of the American Chemical Society.

[13]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[14]  Diego A. Gómez-Gualdrón,et al.  Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. , 2015, Journal of the American Chemical Society.

[15]  Wei Zhou,et al.  Porous Metal-Organic Frameworks for Gas Storage and Separation: What, How, and Why? , 2014, The journal of physical chemistry letters.

[16]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[17]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[18]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[19]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[20]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[21]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[22]  S. Parsons,et al.  Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. , 2011, Journal of the American Chemical Society.

[23]  Kiyo Kurisu,et al.  Life cycle impact assessment and interpretation of municipal solid waste management scenarios based on the midpoint and endpoint approaches , 2011 .

[24]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[25]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[26]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[27]  Jean Rouquerol,et al.  Reporting Physisorption Data for Gas/Solid Systems , 2008 .

[28]  Krista S. Walton,et al.  Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[29]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[30]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[31]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[32]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[33]  Avelino Corma,et al.  From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. , 1997, Chemical reviews.

[34]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[35]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[36]  F. Orellana,et al.  Zeolites surface area calculation from nitrogen adsorption data , 1983 .

[37]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[38]  I. Langmuir THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. , 1918 .

[39]  S. Prabha,et al.  Sing , 2021, Encyclopedic Dictionary of Archaeology.

[40]  P. Llewellyn,et al.  Is the bet equation applicable to microporous adsorbents , 2007 .

[41]  J. S. Beck,et al.  A New Family of Mesoporous Molecular Sieves , 2002 .