FDH Directional Distance Functions with an Application to European Commercial Banks

Weextend Free Disposable Hull (FDH) efficiency analysis towardsthe general directional distance function framework. The profitinterpretation of directional distance functions is extendedto the non-convex FDH technologies. In addition, we derive anefficient enumerative algorithm for computing distance measuresin Free Disposable Hull (FDH) technologies, which applies tothe entire (infinitely large) family of directional distancefunctions. A simple numerical example and an application to Europeancommercial banks illustrate the algorithm.

[1]  Sverre A.C. Kittelsen,et al.  Monte Carlo simulations of DEA efficiency measures and hypothesis tests , 1999 .

[2]  Robert M. Thrall,et al.  What Is the Economic Meaning of FDH? , 1999 .

[3]  Allen N. Berger,et al.  Efficiency of financial institutions: International survey and directions for future research , 1997 .

[4]  R. Färe,et al.  Measuring congestion in production , 1983 .

[5]  R. Shephard Cost and production functions , 1953 .

[6]  Timo Kuosmanen,et al.  Measuring economic efficiency with incomplete price information: With an application to European commercial banks , 2001, Eur. J. Oper. Res..

[7]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[8]  P. W. Wilson,et al.  Statistical Inference in Nonparametric Frontier Models: The State of the Art , 1999 .

[9]  Francisco Pedraja-Chaparro,et al.  On the Role of Weight Restrictions in Data Envelopment Analysis , 1997 .

[10]  Jesús T. Pastor,et al.  Linear programming approaches to the measurement and analysis of productive efficiency , 1994 .

[11]  Bruce Hollingsworth,et al.  Data envelopment analysis and productivity analysis: a review of the options , 1999 .

[12]  Rolf Färe,et al.  Productivity and Undesirable Outputs: A Directional Distance Function Approach , 1995 .

[13]  M. J. Farrell,et al.  The Convexity Assumption in the Theory of Competitive Markets , 1959, Journal of Political Economy.

[14]  D. Luenberger Benefit functions and duality , 1992 .

[15]  S. Grosskopf,et al.  PRODUCTIVITY GROWTH IN APEC COUNTRIES , 1996 .

[16]  Timo Kuosmanen,et al.  DEA with efficiency classification preserving conditional convexity , 2001, Eur. J. Oper. Res..

[17]  A. Charnes,et al.  Data Envelopment Analysis Theory, Methodology and Applications , 1995 .

[18]  Marc Nerlove,et al.  Estimation and identification of Cobb-Douglas production functions , 1965 .

[19]  Timo Kuosmanen,et al.  What Is the Economic Meaning of FDH? A Reply to Thrall , 2000 .

[20]  Philippe Vanden Eeckaut,et al.  Frontier Tales: DEA and FDH , 1993 .

[21]  Henry Tulkens,et al.  On FDH efficiency analysis: Some methodological issues and applications to retail banking, courts, and urban transit , 1993 .

[22]  Lawrence M. Seiford,et al.  Data envelopment analysis: The evolution of the state of the art (1978–1995) , 1996 .

[23]  R. Färe,et al.  Profit, Directional Distance Functions, and Nerlovian Efficiency , 1998 .

[24]  R. Banker Maximum likelihood, consistency and data envelopment analysis: a statistical foundation , 1993 .

[25]  W. Briec A Graph-Type Extension of Farrell Technical Efficiency Measure , 1997 .

[26]  R. Färe,et al.  Benefit and Distance Functions , 1996 .

[27]  C. Lovell,et al.  Measuring the macroeconomic performance of the Taiwanese economy , 1995 .

[28]  J. Wallenius,et al.  A Value Efficiency Approach to Incorporating Preference Information in Data Envelopment Analysis , 1999 .

[29]  C. A. Knox Lovell,et al.  Service Productivity in U.S. Credit Unions , 1995 .

[30]  D. McFadden Cost, Revenue, and Profit Functions , 1978 .

[31]  Jean-Paul Chavas,et al.  A Generalized Distance Function and the Analysis of Production Efficiency , 1999 .