A Baseline Study and Calibration for Multidisciplinary Design Optimization of Hybrid Composite Wind Turbine Blade

Preliminary baseline finite element (FE) model calibrations and evaluations are developed to assist and guide multidisciplinary design optimization (MDO) of a large-scale hybrid composite wind turbine blade. The weight, displacement, and failure index are compared and used for calibration purposes. In addition, a cost estimation model is calibrated for labor hour, as well as labor cost, material cost and total cost. Stability of baseline wind turbine blade against harmonic resonance due to rotor rotation is validated by finite element analysis (FEA). A MDO process is proposed using the calibrated FE and cost estimation models. The MDO optimizes multiple objectives such as blade length, weight, manufacturing cost, and power production. For this analysis, the turbine blade is divided into regions and the sequence of hybrid laminate layup for each region is considered as design variables. Extreme wind condition for rotor rotation and rotor stop condition is considered as the applied load on the blade. The designed structural strength and stiffness are demonstrated to withstand the loads due to harmonic excitation from rotor rotation. A process of design procedure for obtaining an optimum hybrid composite laminate layup and an optimum blade length of a wind turbine blade structure is developed in this research.