Probing decoupling in dark sectors with the cosmic microwave background

The acoustic peaks in the angular power spectrum of cosmic microwave background (CMB) temperature and polarization anisotropies play an important role as a probe of the nature of new relativistic particles contributing to the radiation density in the early universe, parametrized by $\Delta N_{eff}$. The amplitude and phase of the acoustic oscillations provide information about whether the extra species are free-streaming particles, like neutrinos, or tightly-coupled, like the photons, during eras probed by the CMB. On the other hand, some extensions of the Standard Model produce new relativistic particles that decouple from their own non-gravitational interactions after neutrinos, but prior to photons. We study the signature of new relativistic species that decouple during this intermediate epoch. We argue that the decoupling species will cause a scale-dependent change in the amplitude and phase shift of the acoustic oscillations, different from the usual constant shifts on small scales. For intermediate decoupling times, the phase and amplitude shifts depend not only on $\Delta N_{eff}$ but the redshift $z_{dec,X}$ at which the new species decoupled. For $\Delta N_{eff} >0.334$, a Stage IV CMB experiment could determine $N_{eff}$ at the percent level and $z_{dec,X}$ at the $\sim 10\%$ level. For smaller values, $\Delta N_{eff}\sim 0.1$, constraints on $z_{dec,X}$ weaken but remain $\sim 20-50\%$ for $z_{dec,X} \sim \mathcal{O}(10^3-10^4)$. As an application, we study the contributions to $\Delta N_{eff}$ and determine the $z_{dec,X}$ values for simple implementations of the so-called $N$naturalness model.

[1]  D. Green,et al.  CMB delensing beyond the B modes , 2016, 1609.08143.

[2]  Anthony Challinor,et al.  CMB power spectrum parameter degeneracies in the era of precision cosmology , 2012, 1201.3654.

[3]  Zhen Pan,et al.  First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background. , 2015, Physical review letters.

[4]  D. Green,et al.  Searching for light relics with large-scale structure , 2017, Journal of Cosmology and Astroparticle Physics.

[5]  R. D’Agnolo,et al.  Solving the Hierarchy Problem at Reheating with a Large Number of Degrees of Freedom. , 2016, Physical review letters.

[6]  Edmund Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1995 .

[7]  P. Steinhardt,et al.  Probing the early universe with inflationary gravitational waves , 2005, astro-ph/0512014.

[8]  M. Dolan,et al.  A lower bound on the mass of cold thermal dark matter from Planck , 2013, 1303.6270.

[9]  Sean M. Carroll,et al.  Dark matter and dark radiation , 2008, 0810.5126.

[10]  R. Brandenberger,et al.  Observational constraints on theories with a blue spectrum of tensor modes , 2007, 0711.4602.

[11]  G. Mangano,et al.  A robust upper limit on Neff from BBN, circa 2011 , 2011, 1103.1261.

[12]  Javier Redondo,et al.  Cosmological bounds on sub-MeV mass axions , 2010, 1011.3694.

[13]  Alessandro Strumia,et al.  Neutrino masses and mixings and... , 2006 .

[14]  B. Fields,et al.  New Bounds for Axions and Axion-Like Particles with keV-GeV Masses , 2015, 1501.04097.

[15]  Alessandra Buonanno,et al.  Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: implications for the early universe , 2007, 0708.2279.

[16]  Uros Seljak,et al.  Signatures of relativistic neutrinos in CMB anisotropy and matter clustering , 2004 .

[17]  S. Pastor,et al.  Relic neutrino decoupling with flavour oscillations revisited , 2016, 1606.06986.

[18]  Uros Seljak,et al.  Reconstruction of lensing from the cosmic microwave background polarization , 2003 .

[19]  A. Boyarsky,et al.  The Role of Sterile Neutrinos in Cosmology and Astrophysics , 2008, 0901.0011.

[20]  Kris Sigurdson,et al.  Limits on Neutrino-Neutrino Scattering in the Early Universe , 2013, 1306.1536.

[21]  Daniel Baumann,et al.  New Target for Cosmic Axion Searches. , 2016, Physical review letters.

[22]  S. Esposito,et al.  Non equilibrium spectra of degenerate relic neutrinos , 2000, astro-ph/0005573.

[23]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[24]  K. Abazajian,et al.  Sterile Neutrino Hot, Warm, and Cold Dark Matter , 2001 .

[25]  Kris Sigurdson,et al.  Cosmology of atomic dark matter , 2012, 1209.5752.

[26]  Kris Sigurdson,et al.  Constraints on large-scale dark acoustic oscillations from cosmology , 2013, 1310.3278.

[27]  Neutrinos in cosmology , 2002, hep-ph/0202122.

[28]  M. Fukugita,et al.  Nonequilibrium effect of the neutrino distribution on primordial helium synthesis. , 1992, Physical review. D, Particles and fields.

[29]  Non-equilibrium corrections to the spectra of massless neutrinos in the early universe , 1997, hep-ph/9703315.

[30]  W. Repko,et al.  Comment on 'Damping of tensor modes in cosmology' , 2005, astro-ph/0509096.

[31]  Justin Menestrina,et al.  Dark Radiation from Particle Decays during Big Bang Nucleosynthesis , 2011, 1111.0605.

[32]  Mitra,et al.  Effect of neutrino heating in the early Universe on neutrino decoupling temperatures and nucleosynthesis. , 1991, Physical review. D, Particles and fields.

[33]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[34]  M. Dolan,et al.  Increasing Neff with particles in thermal equilibrium with neutrinos , 2012, 1207.0497.

[35]  Gravitational Lensing Effect on Cosmic Microwave Background Anisotropies: A Power Spectrum Approach , 1995, astro-ph/9505109.

[36]  Cosmic microwave background fluctuations from gravitational waves: An analytic approach☆ , 2004, astro-ph/0412581.

[37]  R. Wilson Modern Cosmology , 2004 .

[38]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[39]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Interpretation of the TT and TE Angular Power Spectrum Peaks , 2003, astro-ph/0302220.

[40]  Daniel Baumann,et al.  Phases of new physics in the CMB , 2015, 1508.06342.

[41]  H.X.Miao,et al.  Analytic spectrum of relic gravitational waves modified by neutrino free streaming and dark energy , 2007 .

[42]  Cosmological Neutrino Background Revisited , 1997, astro-ph/9712199.

[43]  Edward J. Wollack,et al.  Advanced ACTPol Cryogenic Detector Arrays and Readout , 2015, 1510.02809.

[44]  T. Kajino,et al.  Generation of curvature perturbations with extra anisotropic stress , 2009, 0910.1976.

[45]  Matias Zaldarriaga,et al.  Phases of New Physics in the BAO Spectrum , 2017, 1703.00894.

[46]  S. Shandera,et al.  Gravitational Waves from Binary Mergers of Subsolar Mass Dark Black Holes. , 2018, Physical review letters.

[47]  Y. Zel’dovich,et al.  Recombination of hydrogen in the hot model of the universe , 1968 .

[48]  J. Redondo,et al.  Dark radiation constraints on minicharged particles in models with a hidden photon , 2013, 1311.2600.

[49]  S. Dodelson,et al.  Nonequilibrium neutrino statistical mechanics in the expanding Universe. , 1992, Physical review. D, Particles and fields.

[50]  P. Peebles RECOMBINATION OF THE PRIMEVAL PLASMA. , 1968 .

[51]  C. Hirata,et al.  Cosmological hydrogen recombination: The effect of extremely high-n states , 2009, 0911.1359.

[52]  Spergel,et al.  Cosmological-parameter determination with microwave background maps. , 1996, Physical review. D, Particles and fields.

[53]  Ryan Keisler,et al.  How massless neutrinos affect the cosmic microwave background damping tail , 2011, 1104.2333.

[54]  G. Steigman Equivalent Neutrinos, Light WIMPs, and the Chimera of Dark Radiation , 2013, 1303.0049.

[55]  Gennaro Miele,et al.  Relic neutrino decoupling including flavour oscillations , 2005 .

[56]  David E. Kaplan,et al.  Dark atoms: asymmetry and direct detection , 2011, 1105.2073.

[57]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[58]  Ren'ee Hlovzek,et al.  Multiwavelength constraints on the inflationary consistency relation , 2015, 1502.00302.

[59]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[60]  E. Kolb,et al.  Production of massive particles during reheating , 1998, hep-ph/9809453.

[61]  M. Schmaltz,et al.  Non-Abelian dark matter and dark radiation , 2015, 1505.03542.

[62]  J. Lesgourgues,et al.  Linear scale bounds on dark matter-dark radiation interactions and connection with the small scale crisis of cold dark matter , 2017, 1706.06870.

[63]  Sungwoo Hong,et al.  Hidden dark matter sector, dark radiation, and the CMB , 2015, 1505.04192.

[64]  Oliver Zahn,et al.  Delensing CMB polarization with external datasets , 2010, 1010.0048.

[65]  Wei Xue,et al.  Thermal axion production , 2013, 1310.6982.

[66]  G. Miele,et al.  A precision calculation of the effective number of cosmological neutrinos , 2001, astro-ph/0111408.

[67]  Zaldarriaga,et al.  Analytic approach to the polarization of the cosmic microwave background in flat and open universes. , 1995, Physical review. D, Particles and fields.

[68]  V. Kuzmin,et al.  On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe , 1985 .

[69]  D. Hanson,et al.  PROSPECTS FOR DELENSING THE COSMIC MICROWAVE BACKGROUND FOR STUDYING INFLATION , 2014, 1410.0691.

[70]  Yang-Hong Zhang,et al.  New method to constrain the relativistic free-streaming gas in the Universe , 2009, 0905.3223.

[71]  Heckler Astrophysical applications of quantum corrections to the equation of state of a plasma. , 1994, Physical review. D, Particles and fields.

[72]  E. Komatsu,et al.  Improved Calculation of the Primordial Gravitational Wave Spectrum in the Standard Model , 2006, astro-ph/0604176.

[73]  Marcel Schmittfull,et al.  Delensing the CMB with the cosmic infrared background , 2015 .

[74]  Zhen Pan,et al.  A tale of two modes: neutrino free-streaming in the early universe , 2017, 1704.06657.

[75]  Yang-Hong Zhang,et al.  Analytic spectra of CMB anisotropies and polarization generated by relic gravitational waves with modification due to neutrino free-streaming , 2008, 0811.4008.

[76]  Steven Weinberg,et al.  Goldstone bosons as fractional cosmic neutrinos. , 2013, Physical review letters.

[77]  Masaki Yamada,et al.  Observable dark radiation from a cosmologically safe QCD axion , 2015, 1504.04126.

[78]  David E. Kaplan,et al.  New light species and the CMB , 2013, 1303.5379.

[79]  Radiative transfer effects in primordial hydrogen recombination , 2010, 1009.4697.

[80]  Ran Huo,et al.  Visualizing invisible dark matter annihilation with the CMB and matter power spectrum , 2018, Physical Review D.

[81]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) IV: efficient implementation of non-cold relics , 2011, 1104.2935.