On the Hardest Problem Formulations for the 0/1 0 / 1 Lasserre Hierarchy

The Lasserre/Sum-of-Squares (SoS) hierarchy is a systematic procedure for constructing a sequence of increasingly tight semidefinite relaxations. It is known that the hierarchy converges to the 0/1 polytope in n levels and captures the convex relaxations used in the best available approximation algorithms for a wide variety of optimization problems. In this paper we characterize the set of 0/1 integer linear problems and unconstrained 0/1 polynomial optimization problems that can still have an integrality gap at level n − 1. These problems are the hardest for the Lasserre hierarchy in this sense.

[1]  Pravesh Kothari,et al.  Sum of Squares Lower Bounds from Pairwise Independence , 2015, STOC.

[2]  Claire Mathieu,et al.  Integrality Gaps of Linear and Semi-Definite Programming Relaxations for Knapsack , 2011, IPCO.

[3]  Avner Magen,et al.  Robust Algorithms for on Minor-Free Graphs Based on the Sherali-Adams Hierarchy , 2009, APPROX-RANDOM.

[4]  Eden Chlamtác,et al.  Approximation Algorithms Using Hierarchies of Semidefinite Programming Relaxations , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[5]  Aditya Bhaskara,et al.  Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph , 2011, SODA.

[6]  Y. Nesterov Global quadratic optimization via conic relaxation , 1998 .

[7]  Dima Grigoriev,et al.  Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity , 2001, Theor. Comput. Sci..

[8]  Pablo A. Parrilo,et al.  Sparse sums of squares on finite abelian groups and improved semidefinite lifts , 2016, Math. Program..

[9]  Prasad Raghavendra,et al.  Rounding Semidefinite Programming Hierarchies via Global Correlation , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[10]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[11]  Sanjeev Arora,et al.  Subexponential Algorithms for Unique Games and Related Problems , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[12]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[13]  T. Rothvoss The Lasserre hierarchy in Approximation algorithms Lecture Notes for the MAPSP 2013 Tutorial Preliminary version , 2013 .

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  Grant Schoenebeck,et al.  Linear Level Lasserre Lower Bounds for Certain k-CSPs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[16]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[17]  Gyanit Singh,et al.  Improved Approximation Guarantees through Higher Levels of SDP Hierarchies , 2008, APPROX-RANDOM.

[18]  Prasad Raghavendra,et al.  Approximating CSPs with global cardinality constraints using SDP hierarchies , 2011, SODA.

[19]  Prasad Raghavendra,et al.  Lower Bounds on the Size of Semidefinite Programming Relaxations , 2014, STOC.

[20]  Madhur Tulsiani,et al.  Convex Relaxations and Integrality Gaps , 2012 .

[21]  Dima Grigoriev,et al.  Complexity of Semi-algebraic Proofs , 2002, STACS.

[22]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[23]  Venkatesan Guruswami,et al.  MaxMin allocation via degree lower-bounded arborescences , 2009, STOC '09.

[24]  Dima Grigoriev,et al.  Complexity of Positivstellensatz proofs for the knapsack , 2002, computational complexity.

[25]  Rekha R. Thomas,et al.  Theta Bodies for Polynomial Ideals , 2008, SIAM J. Optim..

[26]  Kevin K. H. Cheung Computation of the Lasserre Ranks of Some Polytopes , 2007, Math. Oper. Res..

[27]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[28]  Yuan Zhou,et al.  Hypercontractivity, sum-of-squares proofs, and their applications , 2012, STOC '12.

[29]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[30]  N. Z. Shor Class of global minimum bounds of polynomial functions , 1987 .

[31]  Wenceslas Fernandez de la Vega,et al.  Linear programming relaxations of maxcut , 2007, SODA '07.

[32]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[33]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[34]  Venkatesan Guruswami,et al.  Lasserre Hierarchy, Higher Eigenvalues, and Approximation Schemes for Graph Partitioning and Quadratic Integer Programming with PSD Objectives , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[35]  Sandy Irani,et al.  The Power of Quantum Systems on a Line , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[36]  Madhur Tulsiani CSP gaps and reductions in the lasserre hierarchy , 2009, STOC '09.

[37]  Dima Grigoriev,et al.  Complexity of Null-and Positivstellensatz proofs , 2001, Ann. Pure Appl. Log..

[38]  Pablo A. Parrilo,et al.  Sparse sum-of-squares certificates on finite abelian groups , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[39]  Fabrizio Grandoni,et al.  How to Sell Hyperedges: The Hypermatching Assignment Problem , 2013, SODA.

[40]  Ryan O'Donnell,et al.  Analysis of Boolean Functions , 2014, ArXiv.

[41]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[42]  Yuan Zhou,et al.  Approximability and proof complexity , 2012, SODA.