Benchmark results in computational heat and fluid flow : the integral transform method

Abstract The integral transform method is reviewed as a benchmark tool in computational heat and fluid flow, with special emphasis on nonlinear problems. The hybrid numerical-analytical nature of this approach collapses the numerical task into one single independent variable, and thus allows for a simple computational procedure with automatic global error control and mild increase in computational effort for multidimensional situations. Various applications on nonlinear diffusion and convection-diffusion are more closely considered, followed by sample results from recent contributions.

[1]  M. N. Özişik,et al.  On the Solution of Linear Diffusion Problems With Variable Boundary Condition Parameters , 1974 .

[2]  J. W. Ribeiro,et al.  Numerical-Analytical Study of Nonlinear Drying Problems with Radiative Boundaries , 1993 .

[3]  R. M. Cotta,et al.  On the solution of non‐linear drying problems in capillary porous media through integral transformation of Luikov equations , 1995 .

[4]  O. Burggraf Analytical and numerical studies of the structure of steady separated flows , 1966, Journal of Fluid Mechanics.

[5]  R. M. Cotta,et al.  HYBRID NUMERICAL/ANALYTICAL APPROACH TO NONLINEAR DIFFUSION PROBLEMS , 1990 .

[6]  M. N. Özişik,et al.  Unified Analysis and Solutions of Heat and Mass Diffusion , 1984 .

[7]  Renato Machado Cotta,et al.  Integral Transforms in Computational Heat and Fluid Flow , 1993 .

[8]  R. M. Cotta,et al.  HYBRID ANALYSIS OF TRANSIENT NON‐LINEAR CONVECTION‐DIFFUSION PROBLEMS , 1992 .

[9]  C. L. Tien,et al.  Natural convection in a vertical porous enclosure with internal heat generation , 1984 .

[10]  H. B. Keller,et al.  Driven cavity flows by efficient numerical techniques , 1983 .

[11]  R. M. Cotta,et al.  ON THE SOLUTION OF NONLINEAR ELLIPTIC CONVECTION-DIFFUSION PROBLEMS THROUGH THE INTEGRAL TRANSFORM METHOD , 1993 .

[12]  R. M. Cotta,et al.  Integral transform solution for the lid‐driven cavity flow problem in streamfunction‐only formulation , 1992 .

[13]  R. M. Cotta,et al.  Integral transform solutions of diffusion problems with nonlinear equation coefficients , 1990 .

[14]  R. M. Cotta,et al.  INTEGRAL TRANSFORM ANALYSIS OF NATURAL CONVECTION IN POROUS ENCLOSURES , 1993 .

[15]  Marcel Crochet,et al.  On the stream function‐vorticity finite element solutions of Navier‐Stokes equations , 1978 .

[16]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .