Joint Model Order Selection and Parameter Estimation of Chirps With Harmonic Components

We consider the problem of jointly determining the number of harmonic components of a fundamental linear chirp, and estimating its parameters (i.e., its initial frequency and frequency rate), given time samples of the observed signal. Common model order criteria select the number of harmonics based on the maximum likelihood estimator. We develop exact and approximated maximum likelihood estimators of these parameters. To avoid an exhaustive search in the initial frequency-frequency rate space involved by those estimators, we propose an alternative low-complexity two-step estimation method. The first step separates the signal to its harmonic components. Then, in the second step, the parameters of interest are estimated using least squares method given the phases of the harmonic components. The method is compared to the exact and approximated maximum likelihood estimators and to the well-known high-order ambiguity function based method. Numerical simulations and real data examples demonstrate that the proposed low-complexity method can successfully replace the maximum likelihood estimator in the model order criteria at moderate to high signal-to-noise ratio. Since the estimates obtained by the proposed method achieve the Cramer-Rao lower bound at these signal to noise ratios.

[1]  Corentin Dubois,et al.  Joint Detection and Tracking of Time-Varying Harmonic Components: A Flexible Bayesian Approach , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[2]  Peter O'Shea Fast parameter estimation algorithms for linear FM signals , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[3]  Petar M. Djuric,et al.  Parameter estimation of chirp signals , 1990, IEEE Trans. Acoust. Speech Signal Process..

[4]  Arye Nehorai,et al.  Adaptive comb filtering for harmonic signal enhancement , 1986, IEEE Trans. Acoust. Speech Signal Process..

[5]  R. Tao,et al.  Detection and parameter estimation of multicomponent LFM signal based on the fractional fourier transform , 2004, Science in China Series F: Information Sciences.

[6]  Melvin J. Hinich Detecting a hidden periodic signal when its period is unknown , 1982 .

[7]  John Y. Cheung,et al.  Maximum likelihood estimation of direction of arrival and frequency sweeping rate with linear chirp signals , 1995, IEEE Signal Processing Letters.

[8]  B. Friedlander,et al.  Multicomponent signal analysis using the polynomial-phase transform , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Karim Abed-Meraim,et al.  Estimating the parameters of chirp signals: an iterative approach , 1998, IEEE Trans. Signal Process..

[10]  Anna Scaglione,et al.  Product high-order ambiguity function for multicomponent polynomial-phase signal modeling , 1998, IEEE Trans. Signal Process..

[11]  Alon Amar,et al.  A computationally efficient blind estimator of polynomial phase signals observed by a sensor array , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.

[12]  Braham Barkat,et al.  Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD: statistical performance in the presence of additive gaussian noise , 1999, IEEE Trans. Signal Process..

[13]  Xiang-Gen Xia,et al.  Discrete chirp-Fourier transform and its application to chirp rate estimation , 2000, IEEE Trans. Signal Process..

[14]  Benjamin Friedlander,et al.  A technique for estimating the parameters of multiple polynomial phase signals , 1992, [1992] Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis.

[15]  Jian Li,et al.  Computationally efficient parameter estimation for harmonic sinusoidal signals , 2000, Signal Process..

[16]  B. Volcker,et al.  Chirp parameter estimation using rank reduction , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[17]  A. Belouchrani,et al.  Multipath parameter estimation of linear chirp signals using sensor arrays , 2004, Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal.

[18]  Benjamin J. Slocumb,et al.  A polynomial phase parameter estimation-phase unwrapping algorithm , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[19]  Jakob Ängeby,et al.  Estimating signal parameters using the nonlinear instantaneous least squares approach , 2000, IEEE Trans. Signal Process..

[20]  Hing-Cheung So,et al.  Subspace-Based Algorithm for Parameter Estimation of Polynomial Phase Signals , 2008, IEEE Transactions on Signal Processing.

[21]  N. McDicken,et al.  Filtering of chirped ultrasound echo signals with the fractional Fourier transform , 2004, IEEE Ultrasonics Symposium, 2004.

[22]  B. Porat,et al.  Linear FM signal parameter estimation from discrete-time observations , 1991 .

[23]  Cheng-I Chen,et al.  An Accurate Time-Domain Procedure for Harmonics and Interharmonics Detection , 2010, IEEE Transactions on Power Delivery.

[24]  Boaz Porat,et al.  Estimation and classification of polynomial-phase signals , 1991, IEEE Trans. Inf. Theory.

[25]  Peter O'Shea Improving Polynomial Phase Parameter Estimation by Using Nonuniformly Spaced Signal Sample Methods , 2012, IEEE Transactions on Signal Processing.

[26]  Frankie K. W. Chan,et al.  Accurate frequency estimation for real harmonic sinusoids , 2004, IEEE Signal Processing Letters.

[27]  B. Himed,et al.  Parameter estimation of linear frequency-modulated signals using integrated cubic phase function , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[28]  T. Abatzoglou,et al.  "Fast maximum likelihood joint estimation of frequency and frequency rate" , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[29]  P. Flandrin,et al.  On the Time–Frequency Detection of Chirps1 , 1999 .

[30]  Sergio Barbarossa,et al.  Analysis of multicomponent LFM signals by a combined Wigner-Hough transform , 1995, IEEE Trans. Signal Process..

[31]  Gerard Ledwich,et al.  A computationally efficient technique for estimating the parameters of polynomial-phase signals from noisy observations , 2005, IEEE Transactions on Signal Processing.

[32]  Randolph L. Moses,et al.  A Combined Order Selection and Parameter Estimation Algorithm for Coupled Harmonics , 2003 .

[33]  Andreas Jakobsson,et al.  On Optimal Filter Designs for Fundamental Frequency Estimation , 2008, IEEE Signal Processing Letters.

[34]  Steven M. Kay,et al.  Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling , 2002, IEEE Trans. Signal Process..

[35]  Andreas Jakobsson,et al.  Sinusoidal Order Estimation Using Angles between Subspaces , 2009, EURASIP J. Adv. Signal Process..

[36]  Andreas Jakobsson,et al.  Joint fundamental frequency and order estimation using optimal filtering , 2009, 2009 17th European Signal Processing Conference.

[37]  R. P. Perry,et al.  SAR imaging of moving targets , 1999 .

[38]  T. Abatzoglou Fast Maximnurm Likelihood Joint Estimation of Frequency and Frequency Rate , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[39]  Jerry M. Mendel,et al.  Lessons in digital estimation theory , 1986 .

[40]  Petar M. Djuric,et al.  A model selection rule for sinusoids in white Gaussian noise , 1996, IEEE Trans. Signal Process..

[41]  Jianyu Yang,et al.  Instantaneous Frequency Rate Estimation for High-Order Polynomial-Phase Signals , 2009, IEEE Signal Processing Letters.

[42]  Abdelhak M. Zoubir,et al.  Analysis of Multicomponent Polynomial Phase Signals , 2007, IEEE Transactions on Signal Processing.

[43]  Elias Aboutanios,et al.  Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls. , 2010, The Journal of the Acoustical Society of America.

[44]  M. Vespe,et al.  Lessons for Radar , 2009, IEEE Signal Processing Magazine.

[45]  S. N. Singh,et al.  Exact Model Order ESPRIT Technique for Harmonics and Interharmonics Estimation , 2012, IEEE Transactions on Instrumentation and Measurement.

[46]  Jianyu Yang,et al.  Generalized High-Order Phase Function for Parameter Estimation of Polynomial Phase Signal , 2008, IEEE Transactions on Signal Processing.

[47]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[48]  Alle-Jan van der Veen,et al.  A Low Complexity Blind Estimator of Narrowband Polynomial Phase Signals , 2010, IEEE Transactions on Signal Processing.

[49]  Scott T. Rickard,et al.  Comparing Measures of Sparsity , 2008, IEEE Transactions on Information Theory.

[50]  Mostefa Mesbah,et al.  A Nonstationary Model of Newborn EEG , 2007, IEEE Transactions on Biomedical Engineering.

[51]  A. Swami,et al.  Cramer-Rao bounds for coupled harmonics in noise , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[52]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[53]  Petar M. Djuric,et al.  Estimation of chirp signals by MCMC , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[54]  Benjamin Friedlander,et al.  The discrete polynomial-phase transform , 1995, IEEE Trans. Signal Process..

[55]  Andreas Jakobsson,et al.  Multi-Pitch Estimation , 2009, Multi-Pitch Estimation.

[56]  Sergio Barbarossa,et al.  Detection and estimation of the instantaneous frequency of polynomial-phase signals by multilinear time-frequency representations , 1993, [1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics.

[57]  T. W. Eddy Maximum likelihood detection and estimation for harmonic sets , 1980 .

[58]  Boaz Porat,et al.  Digital Processing of Random Signals: Theory and Methods , 2008 .