Disturbance decoupling for linear time-invariant systems: a matrix pencil approach

We give a new systematic analysis of disturbance decoupling problems for standard linear time-invariant systems based on the theory of matrix pencils. This approach is based on the computation of condensed forms under orthogonal equivalence transformations. From these forms, which can be computed in a numerically stable way, we obtain new necessary and sufficient conditions that are numerically verifiable, and, furthermore, we immediately obtain numerically stable algorithms to compute the desired compensators. We present a numerical example that demonstrates the properties of the new approach.

[1]  Ali Saberi,et al.  Special coordinate basis for multivariable linear systems—finite and infinite zero structure, squaring down and decoupling , 1987 .

[2]  H. Imai,et al.  Disturbance localization and pole shifting by dynamic compensation , 1981 .

[3]  George Miminis,et al.  A direct algorithm for pole assignment of time-invariant multi-input linear systems using state feedback , 1988, Autom..

[4]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[5]  Trifon G. Koussiouris,et al.  Frequency-domain conditions for disturbance rejection and decoupling with stability or pole placement , 1996, Autom..

[6]  A. Morse,et al.  Decoupling and pole assignment by dynamic compensation , 1970 .

[7]  A. Linnemann,et al.  Numerical aspects of disturbance decoupling by measurement feedback , 1987 .

[8]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[9]  A. Laub,et al.  Computation of supremal (A,B)-invariant and controllability subspaces , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[10]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[11]  G. Basile,et al.  Controlled and conditioned invariant subspaces in linear system theory , 1969 .

[12]  Volker Mehrmann,et al.  Disturbance Decoupling for Descriptor Systems by State Feedback , 2000, SIAM J. Control. Optim..

[13]  Vassilis L. Syrmos,et al.  Disturbance decoupling using constrained Sylvester equations , 1994, IEEE Trans. Autom. Control..

[14]  Vasfi Eldem,et al.  Disturbance decoupling problems by measurements feedback: a characterization of all solutions and fixed modes , 1988 .

[15]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.

[16]  J. Schumacher Compensator synthesis using (C,A,B)-pairs , 1980 .

[17]  A. Morse,et al.  Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .

[18]  A. Varga A Schur method for pole assignment , 1981 .

[19]  Paul Van Dooren,et al.  Numerical Linear Algebra Techniques for Systems and Control , 1994 .

[20]  Anton A. Stoorvogel,et al.  The disturbance decoupling problem with measurement feedback and stability for systems with direct feedthrough matrices , 1991 .

[21]  A. Varga On stabilization methods of descriptor systems , 1995 .

[22]  Zongli Lin,et al.  Solutions to General H, Almost Disturbance Decoupling Problem with Measurement Feedback and Internal Stability , 1999 .

[23]  L. R. Fletcher,et al.  On disturbance decoupling in descriptor systems , 1989 .

[24]  Ben M. Chen,et al.  Non-iterative computation of infimum in discrete-time H∞-optimization and solvability conditions for the discrete-time disturbance decoupling problem , 1996 .

[25]  P. Sannuti,et al.  Construction and parameterization of all static and dynamic H/sub 2/-optimal state feedback solutions, optimal fixed modes and fixed decoupling zeros , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[26]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[27]  P. Sannuti,et al.  A special coordinate basis of multivariable linear systems- Finite and infinite zero structure , 1986, 1986 25th IEEE Conference on Decision and Control.

[28]  Marek Rakowski,et al.  Transfer Function Approach to Disturbance Decoupling Problem , 1994 .

[29]  Hajime Akashi,et al.  Disturbance localization and output deadbeat control through an observer in discrete-time linear multivariable systems , 1979 .