DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄
暂无分享,去创建一个
[1] M. Ivette Gomes,et al. The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .
[2] Frederico Caeiro,et al. Bias reduction of a tail index estimator through an external estimation of the second-order parameter , 2004 .
[3] Liang Peng,et al. Comparison of tail index estimators , 1998 .
[4] A. Rényi. On the theory of order statistics , 1953 .
[5] M. Gomes,et al. Bias reduction and explicit semi-parametric estimation of the tail index , 2004 .
[6] M. Neves,et al. Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .
[7] Jan Beirlant,et al. Tail Index Estimation and an Exponential Regression Model , 1999 .
[8] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[9] Alan H. Welsh,et al. Adaptive Estimates of Parameters of Regular Variation , 1985 .
[10] Fernanda Figueiredo,et al. Bias reduction in risk modelling: Semi-parametric quantile estimation , 2006 .
[11] M. Gomes,et al. Asymptotically best linear unbiased tail estimators under a second-order regular variation condition , 2005 .
[12] P. Hall. On Some Simple Estimates of an Exponent of Regular Variation , 1982 .
[13] P. Hall,et al. Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .
[14] D. Pestana,et al. A simple second-order reduced bias’ tail index estimator , 2007 .
[15] M. J. Martins,et al. “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .
[16] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[17] M. Ivette Gomes,et al. A new class of semi-parametric estimators of the second order parameter. , 2003 .