DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄

† In this paper we are interested in an adequate estimation of the dominant component of the bias of Hill’s estimator of a positive tail index ∞, in order to remove it from the classical Hill estimator in difierent asymptotically equivalent ways. If the second order parameters in the bias are computed at an adequate level k1 of a larger order than that of the level k at which the Hill estimator is computed, there may be no change in the asymptotic variances of these reduced bias tail index estimators, which are kept equal to the asymptotic variance of the Hill estimator, i.e., equal to ∞ 2 . The asymptotic distributional properties of the proposed estimators of ∞ are derived and the estimators are compared not only asymptotically, but also for flnite samples through Monte Carlo techniques.

[1]  M. Ivette Gomes,et al.  The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .

[2]  Frederico Caeiro,et al.  Bias reduction of a tail index estimator through an external estimation of the second-order parameter , 2004 .

[3]  Liang Peng,et al.  Comparison of tail index estimators , 1998 .

[4]  A. Rényi On the theory of order statistics , 1953 .

[5]  M. Gomes,et al.  Bias reduction and explicit semi-parametric estimation of the tail index , 2004 .

[6]  M. Neves,et al.  Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .

[7]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[8]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[9]  Alan H. Welsh,et al.  Adaptive Estimates of Parameters of Regular Variation , 1985 .

[10]  Fernanda Figueiredo,et al.  Bias reduction in risk modelling: Semi-parametric quantile estimation , 2006 .

[11]  M. Gomes,et al.  Asymptotically best linear unbiased tail estimators under a second-order regular variation condition , 2005 .

[12]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[13]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .

[14]  D. Pestana,et al.  A simple second-order reduced bias’ tail index estimator , 2007 .

[15]  M. J. Martins,et al.  “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .

[16]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .

[17]  M. Ivette Gomes,et al.  A new class of semi-parametric estimators of the second order parameter. , 2003 .