Black Titania with Nanoscale Helicity

[1]  Jihua Chen,et al.  Porous TiO2/C nanocomposite shells as a high-performance anode material for lithium-ion batteries. , 2013, ACS applied materials & interfaces.

[2]  D. Zhao,et al.  Direct Synthesis of Controllable Microstructures of Thermally Stable and Ordered Mesoporous Crystalline Titanium Oxides and Carbide/Carbon Composites , 2010 .

[3]  Yutaka Murakami,et al.  Defects in Anatase TiO2 Single Crystal Controlled by Heat Treatments , 2004 .

[4]  D. S. Bradshaw,et al.  Signatures of material and optical chirality: Origins and measures , 2015 .

[5]  W. Han,et al.  Carbon-coated Magnéli-phase TinO2n−1 nanobelts as anodes for Li-ion batteries and hybrid electrochemical cells , 2010 .

[6]  Zhonghua Zhang,et al.  Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries , 2013 .

[7]  Chongyin Yang,et al.  Core-shell nanostructured "black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. , 2013, Journal of the American Chemical Society.

[8]  Aasheesh Srivastava,et al.  Benign Synthesis of Black Microspheres of Anatase TiO2 with Paramagnetic Oxygen Vacancies through NH3 Treatment. , 2017, Chemistry.

[9]  D. Zhao,et al.  Ordered mesoporous black TiO(2) as highly efficient hydrogen evolution photocatalyst. , 2014, Journal of the American Chemical Society.

[10]  Lu Han,et al.  Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity , 2012, Nature Communications.

[11]  R. M. Parker,et al.  The Self‐Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance , 2018, Advanced materials.

[12]  Liang Peng,et al.  A Designed TiO2 /Carbon Nanocomposite as a High-Efficiency Lithium-Ion Battery Anode and Photocatalyst. , 2015, Chemistry.

[13]  Xiaoyun Fan,et al.  Facile Synthesis of Defective TiO2−x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis , 2015, Scientific Reports.

[14]  J. Tarascon,et al.  Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature , 2007 .

[15]  F. Morehead,et al.  Liquid Crystal Systems from Fibrillar Polysaccharides , 1959, Nature.

[16]  A. Selloni,et al.  Localized Excitation of Ti(3+) Ions in the Photoabsorption and Photocatalytic Activity of Reduced Rutile TiO2. , 2015, Journal of the American Chemical Society.

[17]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[18]  D. C. Cronemeyer,et al.  The Optical Absorption and Photoconductivity of Rutile , 1951 .

[19]  Haitao Huang,et al.  Hydrogenated TiO2 Nanotube Arrays as High‐Rate Anodes for Lithium‐Ion Microbatteries , 2012 .

[20]  Yating Wang,et al.  Synergetic Enhancement of Light Harvesting and Charge Separation over Surface-Disorder-Engineered TiO2 Photonic Crystals , 2017 .

[21]  Tianquan Lin,et al.  Progress in Black Titania: A New Material for Advanced Photocatalysis , 2016 .

[22]  N. Kotov,et al.  Chiral Inorganic Nanostructures. , 2017, Chemical reviews.

[23]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[24]  R. Doong,et al.  Ordered mesoporous carbon–TiO2 materials for improved electrochemical performance of lithium ion battery , 2012 .

[25]  M. MacLachlan,et al.  Aerogel templating on functionalized fibers of nanocellulose networks , 2018 .

[26]  Shaohua Shen,et al.  Black TiO2 for solar hydrogen conversion , 2017 .

[27]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[28]  Mingdeng Wei,et al.  Ordered mesoporous TiO2–C nanocomposite as an anode material for long-term performance lithium-ion batteries , 2013 .

[29]  Kevin E. Shopsowitz,et al.  Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. , 2012, Angewandte Chemie.

[30]  S. Ramakrishna,et al.  Flower-shaped anatase TiO2 mesostructures with excellent photocatalytic properties , 2014 .

[31]  Y. Matsushita,et al.  Synthesis of nanostructured reduced titanium oxide: crystal structure transformation maintaining nanomorphology. , 2011, Angewandte Chemie.

[32]  J. Browning,et al.  Hydrogen incorporation by plasma treatment gives mesoporous black TiO 2 thin films with visible photoelectrochemical water oxidation activity , 2018 .

[33]  Kevin E. Shopsowitz,et al.  Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. , 2011, Angewandte Chemie.

[34]  S. Andersson,et al.  PHASE ANALYSIS STUDIES ON THE TITANIUM-OXYGEN SYSTEM , 1957 .

[35]  Jong‐Sung Yu,et al.  A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production , 2015 .

[36]  M. MacLachlan,et al.  Self-Assembly Route to TiO2 and TiC with a Liquid Crystalline Order , 2019, Chemistry of Materials.

[37]  W. Hamad,et al.  Structure–process–yield interrelations in nanocrystalline cellulose extraction , 2010 .

[38]  D. Gray,et al.  Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[39]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[40]  Li-ping Zhu,et al.  Effective Formation of Oxygen Vacancies in Black TiO2 Nanostructures with Efficient solar-driven water splitting , 2017 .

[41]  A. Dufresne,et al.  Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. , 2014, Nanoscale.

[42]  Hong Li,et al.  Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries , 2018, npj Computational Materials.

[43]  Kevin E. Shopsowitz,et al.  Biopolymer Templated Glass with a Twist: Controlling the Chirality, Porosity, and Photonic Properties of Silica with Cellulose Nanocrystals , 2014 .

[44]  V. Battaglia,et al.  Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance , 2014 .

[45]  B. Scrosati,et al.  Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries , 2013 .

[46]  Junhong Chen,et al.  Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2 , 2015, Scientific Reports.

[47]  Debasish Mohanty,et al.  The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling , 2016 .

[48]  Kan Zhang,et al.  Surface Localization of Defects in Black TiO2: Enhancing Photoactivity or Reactivity. , 2017, The journal of physical chemistry letters.

[49]  D. Foix,et al.  Phase stability frustration on ultra-nanosized anatase TiO2 , 2015, Scientific Reports.

[50]  Lei Liu,et al.  Black titanium dioxide (TiO2) nanomaterials. , 2015, Chemical Society reviews.

[51]  Xuefeng Guo,et al.  Fabrication of TiO2@carbon core–shell nanosheets for advanced lithium-ion batteries with excellent cyclability , 2017 .

[52]  Chongyin Yang,et al.  Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania , 2013 .

[53]  D. Zhao,et al.  Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution , 2016 .

[54]  Xi Chen,et al.  Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors. , 2018, ACS nano.

[55]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[56]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[57]  D. C. Cronemeyer Infrared Absorption of Reduced Rutile Ti O 2 Single Crystals , 1959 .

[58]  M. MacLachlan,et al.  Optically tunable chiral nematic mesoporous cellulose films. , 2015, Soft matter.

[59]  Ying Dai,et al.  Metallic zinc- assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. , 2013, Chemical communications.

[60]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[61]  Y. Park,et al.  Breathable Carbon‐Free Electrode: Black TiO2 with Hierarchically Ordered Porous Structure for Stable Li–O2 Battery , 2017 .

[62]  Kevin E. Shopsowitz,et al.  Free-standing mesoporous silica films with tunable chiral nematic structures , 2010, Nature.

[63]  G. Duscher,et al.  Structure and Formation Mechanism of Black TiO2 Nanoparticles. , 2015, ACS nano.

[64]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[65]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[66]  Ji‐Yong Shin,et al.  Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries , 2012 .