Counting maximal near perfect matchings in quasirandom and dense graphs

A maximal $\varepsilon$-near perfect matching is a maximal matching which covers at least $(1-\varepsilon)|V(G)|$ vertices. In this paper, we study the number of maximal near perfect matchings in generalized quasirandom and dense graphs. We provide tight lower and upper bounds on the number of $\varepsilon$-near perfect matchings in generalized quasirandom graphs. Moreover, based on these results, we provide a deterministic polynomial time algorithm that for a given dense graph $G$ of order $n$ and a real number $\varepsilon>0$, returns either a conclusion that $G$ has no $\varepsilon$-near perfect matching, or a positive non-trivial number $\ell$ such that the number of maximal $\varepsilon$-near perfect matchings in $G$ is at least $n^{\ell n}$. Our algorithm uses algorithmic version of Szemer\'edi Regularity Lemma, and has $O(f(\varepsilon)n^{5/2})$ time complexity. Here $f(\cdot)$ is an explicit function depending only on $\varepsilon$.

[1]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[2]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[3]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[4]  Alexander Schrijver,et al.  Counting 1-Factors in Regular Bipartite Graphs , 1998, J. Comb. Theory B.

[5]  Ronald L. Graham,et al.  Statistical Problems Involving Permutations With Restricted Positions , 1999 .

[6]  David Gamarnik,et al.  Simple deterministic approximation algorithms for counting matchings , 2007, STOC '07.

[7]  Klas Markström,et al.  On the Number of Matchings in Regular Graphs , 2008, Electron. J. Comb..

[8]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[9]  H. Ryser Combinatorial Mathematics: THE PRINCIPLE OF INCLUSION AND EXCLUSION , 1963 .

[10]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[11]  Terence Tao,et al.  An Epsilon of Room, II: pages from year three of a mathematical blog , 2011 .

[12]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[13]  Alistair Sinclair,et al.  Algorithms for Random Generation and Counting: A Markov Chain Approach , 1993, Progress in Theoretical Computer Science.

[14]  Martin E. Dyer,et al.  Counting perfect matchings and the switch chain , 2017, SIAM J. Discret. Math..

[15]  Vojtech Rödl,et al.  The algorithmic aspects of the regularity lemma , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[16]  Yoshio Okamoto,et al.  Counting the Number of Matchings in Chordal and Chordal Bipartite Graph Classes , 2009, WG.

[17]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[18]  F. Jotzo,et al.  Double counting and the Paris Agreement rulebook , 2019, Science.

[19]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[20]  Yufei Zhao,et al.  On Regularity Lemmas and their Algorithmic Applications , 2017, Comb. Probab. Comput..

[21]  M. Fisher Statistical Mechanics of Dimers on a Plane Lattice , 1961 .

[22]  Martin Loebl,et al.  On the Theory of Pfaffian Orientations. I. Perfect Matchings and Permanents , 1998, Electron. J. Comb..

[23]  P. Csikvári Lower matching conjecture, and a new proof of Schrijver's and Gurvits's theorems , 2014, 1406.0766.

[24]  R. Bapat Recent developments and open problems in the theory of permanents 1 , 2008 .

[25]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[26]  Lenka Zdeborová,et al.  The number of matchings in random graphs , 2006, ArXiv.

[27]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[28]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[29]  Martin Fürer,et al.  Approximately Counting Perfect Matchings in General Graphs , 2005, ALENEX/ANALCO.

[30]  Martin E. Dyer,et al.  On the Switch Markov Chain for Perfect Matchings , 2015, SODA.

[31]  Andrei Z. Broder,et al.  How hard is it to marry at random? (On the approximation of the permanent) , 1986, STOC '86.

[32]  Steve Chien A determinant-based algorithm for counting perfect matchings in a general graph , 2004, SODA '04.

[33]  M. Jerrum Counting, Sampling and Integrating: Algorithms and Complexity , 2003 .

[34]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[35]  Glenn Tesler,et al.  Matchings in Graphs on Non-orientable Surfaces , 2000, J. Comb. Theory, Ser. B.

[36]  Michael Luby,et al.  Approximating the Permanent of Graphs with Large Factors , 1992, Theor. Comput. Sci..

[37]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[38]  Marc Lelarge,et al.  Counting matchings in irregular bipartite graphs and random lifts , 2015, SODA.