Machine Learning and Knowledge Discovery in Databases

s of Invited Talks Using Machine Learning Powers for Good

[1]  Ameet Talwalkar,et al.  Sampling Methods for the Nyström Method , 2012, J. Mach. Learn. Res..

[2]  Thomas Hofmann,et al.  Greedy Layer-Wise Training of Deep Networks , 2007 .

[3]  Geoffrey E. Hinton A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.

[4]  Miguel Á. Carreira-Perpiñán,et al.  Entropic Affinities: Properties and Efficient Numerical Computation , 2013, ICML.

[5]  Pascal Vincent,et al.  Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives , 2012, ArXiv.

[6]  Hariharan Narayanan,et al.  Sample Complexity of Testing the Manifold Hypothesis , 2010, NIPS.

[7]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[8]  Trevor F. Cox,et al.  Metric multidimensional scaling , 2000 .

[9]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[10]  Miguel Á. Carreira-Perpiñán,et al.  The K-modes algorithm for clustering , 2013, ArXiv.

[11]  Geoffrey E. Hinton,et al.  Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure , 2007, AISTATS.

[12]  Hossein Mobahi,et al.  Deep Learning via Semi-supervised Embedding , 2012, Neural Networks: Tricks of the Trade.

[13]  Zhaolei Zhang,et al.  Deep Supervised t-Distributed Embedding , 2010, ICML.

[14]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[15]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[16]  Yann LeCun,et al.  Dimensionality Reduction by Learning an Invariant Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[17]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[18]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[19]  Anil K. Jain,et al.  Incremental nonlinear dimensionality reduction by manifold learning , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[21]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[22]  Jeffrey Pennington,et al.  Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions , 2011, EMNLP.

[23]  W. Greene,et al.  计量经济分析 = Econometric analysis , 2009 .

[24]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[25]  Shuicheng Yan,et al.  Neighborhood preserving embedding , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[26]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[27]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.