The 3D [(Cu2Br2){μ-EtS(CH2)4SEt}]n material: a rare example of a coordination polymer exhibiting triplet-triplet annihilation.

EtS(CH2)4SEt, L1, forms with CuI a luminescent 2D polymer [Cu4I4{μ-L1}2]n (CP1), which exhibits no triplet excitation energy migration, but with CuBr, it forms a 3D material (CP2), [(Cu2Br2){μ-L1}]n consisting of parallel (Cu2Br2S2)n layers bridged by L1's. CP2 shows T1-T1 annihilation at 298 K but not at 77 K.

[1]  Cheng Wang,et al.  Förster Energy Transport in Metal-Organic Frameworks Is Beyond Step-by-Step Hopping. , 2016, Journal of the American Chemical Society.

[2]  Antoine Bonnot,et al.  1,4-Bis(arylthio)but-2-enes as Assembling Ligands for (Cu2X2)n (X= I, Br ; n = 1, 2) Coordination Polymers : Aryl Substitution, Olefin Configuration, and Halide Effects on the Dimensionality, Cluster Size, and Luminescence Properties , 2016 .

[3]  C. C. Epley,et al.  Ruthenium(ii)-polypyridyl zirconium(iv) metal–organic frameworks as a new class of sensitized solar cells† †Electronic supplementary information (ESI) available: PXRD, TGA, BET, SEM, emission lifetimes, diffuse reflectance, steady state emission, and IPCE/diffuse reflectance overlay. See DOI: 10.103 , 2015, Chemical science.

[4]  Chiara Botta,et al.  Cu(I) hybrid inorganic-organic materials with intriguing stimuli responsive and optoelectronic properties , 2016 .

[5]  N. Kitamura,et al.  Directional Energy Transfer in Mixed-Metallic Copper(I)-Silver(I) Coordination Polymers with Strong Luminescence. , 2015, Inorganic chemistry.

[6]  Antoine Bonnot,et al.  CuX (X = Cl, Br, I) Containing Coordination Polymers Built Upon Isomeric RSCH2C≡CCH2SR (R = p-Tolyl, Benzyl) Dithioether Ligands: First Example of a Luminescent (CuCl)n/Dithioether Network , 2015, Journal of Inorganic and Organometallic Polymers and Materials.

[7]  Xiaomin Liu,et al.  Excitation energy migration dynamics in upconversion nanomaterials. , 2015, Chemical Society reviews.

[8]  P. Jaffrès,et al.  La1-xLnxH(O3PCH3)2 (Ln = Tb, Eu; 0 < x ≤ 1): an organic-inorganic hybrid with lanthanide chains and tunable luminescence properties. , 2015, Dalton transactions.

[9]  Tae Ho Kim,et al.  Reversible transformation between cubane and stairstep Cu4I4 clusters using heat or solvent vapor. , 2015, Chemistry.

[10]  M. Knorr,et al.  Stabilization of (CuX)n Clusters (X = Cl, Br, I; n = 2, 4, 5, 6, 8) in Mono- and Dithioether-Containing Layered Coordination Polymers , 2015, Journal of Cluster Science.

[11]  H. Patterson,et al.  Structure, Dynamics, and Photophysics in the Copper(I) Iodide–Tetrahydrothiophene System , 2014 .

[12]  G. Wiederrecht,et al.  Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. , 2013, Journal of the American Chemical Society.

[13]  M. Knorr,et al.  Cluster-Containing Coordination Polymers Built Upon (Cu2I2S2)m Units (m = 2, 3) and ArSCH2C≡CCH2SAr Ligands: Is the Cluster Size Dependent Upon Steric Hindrance or Ligand Rigidity? , 2013, Journal of Inorganic and Organometallic Polymers and Materials.

[14]  Antoine Bonnot,et al.  Metal-to-Ligand Ratio Effect on the Size of Copper Iodide and Copper Bromide Clusters in 1,4-Bis(cyclohexylthio)butane-Spanned Coordination Polymers , 2013, Journal of Cluster Science.

[15]  Z. Assefa,et al.  Recent Progress in Cyano Complexes of Platinum and Gold as Sensitizers of Lanthanide Emissions , 2012 .

[16]  J. Boilot,et al.  Thermochromic luminescence of copper iodide clusters: the case of phosphine ligands. , 2011, Inorganic chemistry.

[17]  M. Omary,et al.  Phosphorescence sensitization via heavy-atom effects in d10 complexes , 2011 .

[18]  M. Knorr,et al.  Effect of t-BuS vs. n-BuS on the topology, Cu⋯Cu distances and luminescence properties of 2D Cu4I4/RS(CH2)4SR metal–organic frameworks , 2011 .

[19]  Xiaobo Li,et al.  Structure and luminescence of copper(I) cyanide-amine and -sulfide networks , 2010 .

[20]  Y. Ozawa,et al.  Flexibility of cubane-like Cu4I4 framework: temperature dependence of molecular structure and luminescence thermochromism of [Cu4I4(PPh3)4] in two polymorphic crystalline states. , 2010, Chemical communications.

[21]  D. Fortin,et al.  Reactivity of CuI and CuBr toward Et2S: a reinvestigation on the self-assembly of luminescent copper(I) coordination polymers. , 2010, Inorganic chemistry.

[22]  M. Knorr,et al.  Luminescent coordination polymers built upon cu(4) x(4) (x=br,i) clusters and mono- and dithioethers. , 2010, Macromolecular rapid communications.

[23]  Jingkang Wang,et al.  Varying the frameworks of coordination polymers with (CuI)4 cubane cluster by altering terminal groups of thioether ligands , 2009 .

[24]  D. Fortin,et al.  Rigidity effect of the dithioether spacer on the size of the luminescent cluster (Cu(2)I(2))(n) (n = 2, 3) in their coordination polymers. , 2009, Dalton transactions.

[25]  A. Hauser,et al.  Energy migration within the 2E state of Cr3 , 2008 .

[26]  So Young Lee,et al.  Temperature-dependent 3-D CuI coordination polymers of calix[4]-bis-dithiacrown: crystal-to-crystal transformation and photoluminescence change on coordinated solvent removal. , 2008, Journal of the American Chemical Society.

[27]  S. Lin,et al.  Structural Analyses of tetrathiadodecahydro[3.3.3.3]paracyclophane Complexes with Copper(I) and Silver(I) , 2008 .

[28]  Y. W. Shin,et al.  Luminescent staircase copper(I) coordination polymer based on planar Cu3I3 , 2007 .

[29]  F. De Angelis,et al.  Electronic transitions involved in the absorption spectrum and dual luminescence of tetranuclear cubane [Cu4I4(pyridine)4] cluster: a density functional theory/time-dependent density functional theory investigation. , 2006, Inorganic chemistry.

[30]  S. Ng,,et al.  Increasing structure dimensionality of copper(I) complexes by varying the flexible thioether ligand geometry and counteranions. , 2006, Inorganic chemistry.

[31]  M. Heller A Novel Huge Diamond‐like Three‐fold Interpenetrated Network of CuI and Crown Ether , 2006 .

[32]  H. Paulsen Reconstitution and Pigment Exchange , 2006 .

[33]  Tao Wu,et al.  A chiral coordination polymer containing copper(I) iodide layer composed of intersecting [CuI]n helices , 2005 .

[34]  W. Sheldrick,et al.  Copper(I) Pseudohalide Coordination Polymers containing Macrocyclic Methylcycloarsoxane (CH3AsO)n (n = 4, 5) or 1, 7-Dithia-18-crown-6 Bridging Units. Kupfer(I)-Pseudohalogenid-haltige Koordinationspolymere mit den Makrozyklen Methylcycloarsoxan (CH3AsO)n (n = 4, 5) oder 1, 7-Dithia-18-Krone-6 als B , 2005 .

[35]  N. Aratani,et al.  Excitation energy migration in multiporphyrin arrays , 2005 .

[36]  G. Ning,et al.  Porous copper(I) complexes of 2,11-dithia[3.3]paracyclophane: desorption and adsorption of guest molecules , 2004 .

[37]  E. List,et al.  Excitation energy migration assisted processes in conjugated polymers , 2004 .

[38]  W. Sheldrick,et al.  One‐ to Three‐Dimensional CuI and CuCN Based Coordination Polymers containing the Alkali Cation Ligating Thiacrown Ether 1, 10‐Dithia‐18‐Crown‐6 , 2002 .

[39]  A. J. Blake,et al.  Discrete molecular and extended polymeric copper(I) halide complexes of tetradentate thioether macrocycles , 2001 .

[40]  P. Harvey,et al.  Properties of PdI-PdI bonds. Theoretical and spectroscopic study of palladium Pd2(dmb)2X2 complexes (dmb = 1,8-diisocyano-p-menthane; X = Cl, Br) , 1993 .

[41]  Melvin B. Robin,et al.  Higher excited states of polyatomic molecules , 1974 .