Electrical Resistivity in Amorphous Metals: Consequences of Phonon Ineffectiveness in the Diffraction Model

Abstract : Electrical transport in amorphous metals is analyzed in the context of the Baym-Faber-Ziman theory. The theory is generalized to incorporate electron mean free path effects through the Pippard-Ziman condition on the electron-phonon interaction. A variety of model t-matrices are considered. The geometrical structure factors are modeled by Percus-Yevick hard sphere forms and a single branch Debye phonon spectrum is assumed. Detailed results for electrical resistivity rho vs. temperature T and the TCR are presented for extensive ranges of 2kF/kp and electron mean free path. The results, incorporating the Pippard-Ziman condition, are consistent with the observed rho vs. T in low resistivity glassy metals. However, although inclusion of the Pippard-Ziman condition dramatically improves agreement with the data, quantitative agreement is not obtained in high resistivity amorphous metals.