A Systematic Study on Electronic, Mechanical, and Thermal Transport Properties of Germanium Antimony Selenide Telluride Alloy by First-Principles Approach

[1]  X. Zu,et al.  Thermal Transport and Mechanical Properties of Layered Oxychalcogenides LaCuOX (X = S, Se, and Te) , 2022, ACS Applied Energy Materials.

[2]  A. Redaelli,et al.  Material and process engineering challenges in Ge-rich GST for embedded PCM , 2022, Materials Science in Semiconductor Processing.

[3]  R. Naik,et al.  GSST phase change materials and its utilization in optoelectronic devices: A review , 2021, Materials Research Bulletin.

[4]  Juejun Hu,et al.  Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te , 2021, Nature Communications.

[5]  Z. Yin,et al.  Boosting Thermoelectric Performance of 2D Transition-Metal Dichalcogenides by Complex Cluster Substitution: The Role of Octahedral Au6 Clusters , 2021, ACS Applied Energy Materials.

[6]  D. Choi,et al.  Optical phase transition of Ge2Sb2Se4Te1 thin film using low absorption wavelength in the 1550 nm window , 2021 .

[7]  Asir Intisar Khan,et al.  Ultralow–switching current density multilevel phase-change memory on a flexible substrate , 2021, Science.

[8]  Jianhui Yang,et al.  Thermoelectric performances for both p- and n-type GeSe , 2021, Royal Society Open Science.

[9]  Ping Zhang,et al.  High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation* , 2021, Chinese Physics B.

[10]  X. Zu,et al.  Band degeneracy enhanced thermoelectric performance in layered oxyselenides by first-principles calculations , 2021, npj Computational Materials.

[11]  S. Koester,et al.  Bandgap engineering of two-dimensional semiconductor materials , 2020, npj 2D Materials and Applications.

[12]  P. Fantini Phase change memory applications: the history, the present and the future , 2020, Journal of Physics D: Applied Physics.

[13]  Ishu Sharma,et al.  Physical and optical properties of a-Ge-Sb-Se-Te bulk and film samples: Refractive index and its association with electronic polarizability of thermally evaporated a-Ge15-xSbxSe50Te35 thin-films , 2020 .

[14]  Z. Ghouri,et al.  Enhancement of Thermoelectric Properties of Layered Chalcogenide Materials , 2020, REVIEWS ON ADVANCED MATERIALS SCIENCE.

[15]  Zhongchang Wang,et al.  The n- and p-type thermoelectricity property of GeTe by first-principles study , 2019, Journal of Alloys and Compounds.

[16]  C. Wright,et al.  Integrated phase-change photonic devices and systems , 2019, MRS Bulletin.

[17]  Jiong Yang,et al.  Largely enhanced Seebeck coefficient and thermoelectric performance by the distortion of electronic density of states in Ge2Sb2Te5. , 2019, ACS applied materials & interfaces.

[18]  Vei Wang,et al.  VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code , 2019, Comput. Phys. Commun..

[19]  T. Cao,et al.  Fundamentals and Applications of Chalcogenide Phase‐Change Material Photonics , 2019, Advanced Theory and Simulations.

[20]  X. Cartoixà,et al.  Thermal conductivity and phonon hydrodynamics in transition metal dichalcogenides from first-principles , 2019, 2D Materials.

[21]  Seungwu Han,et al.  First-principles calculations on effects of Al and Ga dopants on atomic and electronic structures of amorphous Ge2Sb2Te5 , 2019, Journal of Applied Physics.

[22]  Vladimir Liberman,et al.  Broadband transparent optical phase change materials for high-performance nonvolatile photonics , 2018, Nature Communications.

[23]  Jiang-Tao Liu,et al.  Electronic and mechanical property of high electron mobility semiconductor Bi2O2Se , 2018, Journal of Alloys and Compounds.

[24]  Y. Kawazoe,et al.  Exceptional Thermoelectric Properties of Layered GeAs2 , 2017 .

[25]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[26]  B. Xiao,et al.  Transport Properties and High Thermopower of SnSe2: A Full Ab-Initio Investigation , 2017 .

[27]  K. Kohary,et al.  Determination of the Anisotropic Elastic Properties of Rocksalt Ge2Sb2Te5 by XRD, Residual Stress, and DFT , 2016 .

[28]  M. Bernasconi,et al.  Electron–phonon interaction and thermal boundary resistance at the interfaces of Ge2Sb2Te5 with metals and dielectrics , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  Gang Chen,et al.  Hydrodynamic phonon transport in suspended graphene , 2015, Nature Communications.

[30]  Jun Jiang,et al.  First-principles study on the lattice dynamics and thermodynamic properties of Cu2GeSe3 , 2015 .

[31]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[32]  Heng Wang,et al.  Band Engineering of Thermoelectric Materials , 2012, Advanced materials.

[33]  Qiang Sun,et al.  Theoretical study of negative thermal expansion mechanism of ZnF2 , 2012 .

[34]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[35]  F. Guinea,et al.  Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering , 2009, 0909.1787.

[36]  S. Dong,et al.  Microstructures and thermoelectric properties of GeSbTe based layered compounds , 2007 .

[37]  R. Funahashi,et al.  The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds , 2005 .

[38]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .