Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies

[1]  W. Nauta,et al.  Silver impregnation of degenerating axons in the central nervous system: a modified technic. , 1954, Stain technology.

[2]  L. Heimer,et al.  Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. , 1967, Brain research.

[3]  H. Karten,et al.  A stereotaxic atlas of the brain of the pigeon (Columba livia) , 1967 .

[4]  Harvey J. Karten,et al.  THE ORGANIZATION OF THE AVIAN TELENCEPHALON AND SOME SPECULATIONS ON THE PHYLOGENY OF THE AMNIOTE TELENCEPHALON * , 1969 .

[5]  W. Nauta,et al.  A General Profile of the Vertebrate Brain, with Sidelights on the Ancestry of Cerebral Cortex , 1970 .

[6]  H Zeier,et al.  The archistriatum of the pigeon: organization of afferent and efferent connections. , 1971, Brain research.

[7]  J L Dubbeldam,et al.  The organization and projections of the paleostriatal complex in the pigeon (columba livia) , 1973, The Journal of comparative neurology.

[8]  H. Karten,et al.  Connections of the anterior commissure in the pigeon (Columba livia) , 1973, The Journal of comparative neurology.

[9]  S. Wise,et al.  Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex , 1977, The Journal of comparative neurology.

[10]  A. Hendrickson Chapter 9 – The Use of Axonal Transport for Autoradiographic Tracing of Pathways in the Central Nervous System , 1978 .

[11]  Steven E. Brauth,et al.  Prosencephalic pathways related to the paleostriatum of the pigeon (Columba livia) , 1978, Brain Research.

[12]  L. Landmesser,et al.  The distribution of motoneurones supplying chick hind limb muscles. , 1978, The Journal of physiology.

[13]  S. Hsu,et al.  Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[14]  L. Landmesser,et al.  Pathway selection by chick lumbosacral motoneurons during normal development , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  A. Mackay-Sim,et al.  Cortical projections to visual centres in the rat: An HRP study , 1981, Brain Research.

[16]  M. G. Honig,et al.  The development of sensory projection patterns in embryonic chick hind limb. , 1982, The Journal of physiology.

[17]  S. Hsu,et al.  Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry. , 1982, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[18]  R. Lent The organization of subcortical projections of the hamster's visual cortex , 1982, The Journal of comparative neurology.

[19]  J. D. Coulter,et al.  Axonal and transneuronal transport of wheat germ agglutinin demonstrated by immunocytochemistry , 1982, Brain Research.

[20]  H. Swadlow Efferent systems of primary visual cortex: A review of structure and function , 1983, Brain Research Reviews.

[21]  P. Mantyh,et al.  The use of wheat germ agglutinin-horseradish peroxidase conjugates for studies of anterograde axonal transport , 1983, Journal of Neuroscience Methods.

[22]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[23]  Harvey J. Karten,et al.  Evolution of the amniote basal ganglia , 1984, Trends in Neurosciences.

[24]  W. Crossland Anterograde and retrograde axonal transport of native and derivatized wheat germ agglutinin in the visual system of the chicken , 1985, Brain Research.

[25]  Alan Peters,et al.  Association and Auditory Cortices , 1985, Cerebral Cortex.

[26]  J. McAllister,et al.  Anterograde transport of horseradish peroxidase in the nigrostriatal pathway after neostriatal kainic acid lesions , 1986, Experimental Neurology.

[27]  Gudrun Petursdottir,et al.  Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo , 1986, Journal of Neuroscience Methods.

[28]  M B Hancock,et al.  Two-color immunoperoxidase staining: visualization of anatomic relationships between immunoreactive neural elements. , 1986, The American journal of anatomy.

[29]  B. Schofield,et al.  Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat , 1988, The Journal of comparative neurology.

[30]  R. Masland,et al.  Photoconversion of some fluorescent markers to a diaminobenzidine product. , 1988, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[31]  G. M. Peterson,et al.  Anterograde and retrograde axonal transport of Phaseolus vulgaris leucoagglutinin (PHA-L) from the globus pallidus to the striatum of the rat , 1988, Journal of Neuroscience Methods.

[32]  H. Killackey,et al.  Laminar and areal differences in the origin of the subcortical projection neurons of the rat somatosensory cortex , 1989, The Journal of comparative neurology.

[33]  M. King,et al.  Biocytin: a versatile anterograde neuroanatomical tract-tracing alternative , 1989, Brain Research.

[34]  L. Heimer,et al.  Combinations of Tracer Techniques, Especially HRP and PHA-L, with Transmitter Identification for Correlated Light and Electron Microscopic Studies , 1989 .

[35]  A. Reiner,et al.  Extensive co‐occurrence of substance P and dynorphin in striatal projection neurons: An evolutionarily conserved feature of basal ganglia organization , 1990, The Journal of comparative neurology.

[36]  Harvey J. Karten,et al.  Intratelencephalic projections of the visual wulst in birds (Columba livia): A phaseolus vulgaris leucoagglutinin study , 1990 .

[37]  L. Heimer,et al.  In vivo anterograde and retrograde axonal trnasport of the fluoresecent rhodamine-dextran-amine, Fluor-Ruby, within the CNS , 1990, Brain Research.

[38]  D. Nance,et al.  Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: Applications and pitfalls , 1990, Brain Research Bulletin.

[39]  P. Somogyi,et al.  Simultaneous anterograde labelling of two afferent pathways to the same target area with Phaseolus vulgaris leucoagglutinin and Phaseolus vulgaris leucoagglutinin conjugated to biotin or dinitrophenol. , 1990, Journal of chemical neuroanatomy.

[40]  H. Karten,et al.  Distribution, laminar location, and morphology of tectal neurons projecting to the isthmo‐optic nucleus and the nucleus isthmi, pars parvocellularis in the pigeon (Columba livia) and chick (Gallus domesticus): A retrograde labelling study , 1991, The Journal of comparative neurology.

[41]  P. Izzo A note on the use of biocytin in anterograde tracing studies in the central nervous system: Application at both light and electron microscopic level , 1991, Journal of Neuroscience Methods.

[42]  B. Stein,et al.  The corticostriatal and corticotectal projections of the feline lateral suprasylvian cortex demonstrated with anterograde biocytin and retrograde fluorescent techniques , 1991, Neuroscience Research.

[43]  H. T. Chang Anterograde transport of lucifer yellow-dextran conjugate , 1991, Brain Research Bulletin.

[44]  W. Armstrong,et al.  A biotin-containing compound N-(2-aminoethyl)biotinamide for intracellular labeling and neuronal tracing studies: Comparison with biocytin , 1991, Journal of Neuroscience Methods.

[45]  V. Hamburger,et al.  A series of normal stages in the development of the chick embryo. 1951. , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.