Influence of thermophilic bacteria on calcite and silica precipitation in hot springs with water temperatures above 90 °C: evidence from Kenya and New Zealand

Hot and boiling springs in Kenya and New Zealand that are emitting water with temperatures more than 90 °C are commonly characterized by a complex array of CaCO3 and SiO2 precipitates that have been formed through abiogenic and biogenic processes. Thermophilic bacteria are the only microbes that can survive in the boiling water that is discharged into pools around the spring orifice. Analysis of modern substrates from various springs in the Kenya Rift Valley and the Taupo Volcanic Zone in New Zealand shows that they are inhabited by a diverse array of coccoid and filamentous bacteria. In some areas these bacteria produce copious amounts of mucus that coat the substrates. Although the coccoid and filamentous bacteria provide substrates for CaCO3 and SiO2 precipitation, the microbes do not seem to have any direct influence on the morphology of the precipitates that are produced. Conversely, the mucus found in these hot spring pools selectively takes up elements such as Si, Mg, Al, and Fe, but is not calcifi...

[1]  B. Jones,et al.  Primary silica oncoids from Orakeikorako Hot Springs, North Island, New Zealand , 1996 .

[2]  B. Jones,et al.  High-temperature (>90°C) calcite precipitation at Waikite Hot Springs, North Island, New Zealand , 1996, Journal of the Geological Society.

[3]  B. Jones,et al.  Morphology and growth of aragonite crystals in hot‐spring travertines at Lake Bogoria, Kenya Rift Valley , 1996 .

[4]  B. Jones,et al.  Origin of Endogenetic Micrite in Karst Terrains: A Case Study from the Cayman Islands , 1995 .

[5]  D. Paterson Biogenic structure of early sediment fabric visualized by low-temperature scanning electron microscopy , 1995, Journal of the Geological Society.

[6]  B. Jones,et al.  Noncrystallographic Calcite Dendrites from Hot-Spring Deposits at Lake Bogoria, Kenya , 1995 .

[7]  W. Krumbein,et al.  Structural diversity of biogenic carbonate particles in microbial mats , 1994 .

[8]  B. Jones,et al.  Crystal fabrics and microbiota in large pisoliths from Laguna Pastos Grandes, Bolivia , 1994 .

[9]  M. Stewart,et al.  Geochemical structure and position of the Waiotapu geothermal field, New Zealand , 1994 .

[10]  S. Simmons,et al.  The chemical and isotopic compositions of thermal waters at Waimangu, New Zealand , 1994 .

[11]  R. Riding,et al.  Origin and diagenesis of Quaternary travertine shrub fabrics, Rapolano Terme, central Italy , 1994 .

[12]  C. Défarge,et al.  Kopara in Polynesian atolls: early stages of formation of calcareous stromatolites , 1994 .

[13]  Robert L. Folk,et al.  SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks , 1993 .

[14]  M. Merz,et al.  Biology of carbonate precipitation by cyanobacteria , 1992 .

[15]  M. Pedley Freshwater (phytoherm) reefs: the role of biofilms and their bearing on marine reef cementation , 1992 .

[16]  L. Marini,et al.  Lake Bogoria hot springs (Kenya): geochemical features and geothermal implications , 1992 .

[17]  H. Chafetz,et al.  Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy , 1991 .

[18]  R. W. Renaut,et al.  Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria, Kenya Rift valley , 1988 .

[19]  W. S. Fyfe,et al.  Metallic ion binding by Bacillus subtilis; implications for the fossilization of microorganisms , 1988 .

[20]  B. Jones,et al.  The role of fungi in the diagenetic alteration of spar calcite , 1987 .

[21]  D. Paterson The migratory behaviour of diatom assemblages in a laboratory tidal micro-ecosystem examined by low temperature scanning electron microscopy , 1986 .

[22]  T. Beveridge,et al.  Iron-silica crystallite nucleation by bacteria in a geothermal sediment , 1986, Nature.

[23]  B. Jones,et al.  Dendritic Calcite Crystals Formed by Calcification of Algal Filaments in a Vadose Environment , 1986 .

[24]  T. D. Brock Life at High Temperatures , 1985, Science.

[25]  R. Folk,et al.  Travertines: Depositional Morphology and the Bacterially Constructed Constituents , 1984 .

[26]  D. Cole,et al.  Geothermal mineralization. I. The mechanism of formation of the Beowawe, Nevada, Siliceous sinter deposit , 1983 .

[27]  Tom Fenchel,et al.  Bacteria and Mineral Cycling. , 1981 .

[28]  T. D. Brock Thermophilic Microorganisms and Life at High Temperatures , 1978, Springer Series in Microbiology.

[29]  M. Walter A hot spring analog for the depositional environment of Precambrian iron formations of the Lake Superior Region , 1972 .

[30]  T. D. Brock,et al.  Siliceous Algal and Bacterial Stromatolites in Hot Spring and Geyser Effluents of Yellowstone National Park , 1972, Science.

[31]  T. D. Brock,et al.  Temperature Optimum of Non-sulphur Bacteria from a Spring at 90° C , 1971, Nature.

[32]  T. D. Brock,et al.  Microbial Life at 90 C: the Sulfur Bacteria of Boulder Spring , 1971, Journal of bacteriology.

[33]  T. D. Brock,et al.  Microbiological studies of thermal habitats of the central volcanic region, North Island, New Zealand , 1971 .

[34]  R. Castenholz Thermophilic Blue-Green Algae and the Thermal Environment , 1970, Bacteriological reviews.

[35]  T. D. Brock,et al.  Bacterial Growth Rates above 90�C in Yellowstone Hot Springs , 1969, Science.

[36]  T. D. Brock Micro-organisms adapted to High Temperatures , 1967, Nature.

[37]  D. White,et al.  Silica in hot-spring waters , 1956 .

[38]  W. H. Weed On the formation of siliceous sinter by the vegetation of thermal springs , 1889, American Journal of Science.

[39]  B. Jones,et al.  Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand , 1996 .

[40]  J. Vera,et al.  Mesozoic Pelagic Phosphate Stromatolites from the Penibetic (Betic Cordillera, Southern Spain) , 1994 .

[41]  Jack D. Farmer,et al.  Biological versus inorganic processes in stromatolite morphogenesis: Observations from mineralizing sedimentary systems , 1994 .

[42]  W. S. Fyfe,et al.  Precipitation of carbonate minerals by microorganisms: Implications for silicate weathering and the global carbon dioxide budget , 1994 .

[43]  R. W. Renaut,et al.  Lake Bogoria, Kenya Rift Valley — A Sedimentological Overview , 1994 .

[44]  J. Casanova Stromatolites from the East African Rift: A Synopsis , 1994 .

[45]  S. Golubić Modern Stromatolites: A Review , 1991 .

[46]  A. Knoll,et al.  The evolution of ecological tolerance in prokaryotes , 1989, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[47]  D. Allen,et al.  Geothermics and hydrogeology of the southern part of the Kenya Rift Valley with emphasis on the Magadi-Nakuru area , 1989 .

[48]  A. Pentecost,et al.  Inability to demonstrate calcite precipitation by bacterial isolates from travertine , 1988 .

[49]  C. Woese,et al.  Were the original eubacteria thermophiles? , 1987, Systematic and applied microbiology.

[50]  D. S. Sheppard Fluid chemistry of the waimangu geothermal system , 1986 .

[51]  P. Roberts,et al.  Guide to the active epithermal (geothermal) systems and precious metal deposits of New Zealand , 1986 .

[52]  Zhang Yun Thermophilic microorganisms in the hot springs of Tengchong geothermal area, West Yunnan, China , 1986 .

[53]  T. D. Brock Thermophiles : general, molecular, and applied microbiology , 1986 .

[54]  J. Casanova East African Rift stromatolites , 1986, Geological Society, London, Special Publications.

[55]  S. R. Richards,et al.  A comparative study of techniques for the examination of biofilms by scanning electron microscopy , 1984 .

[56]  J. Oehler Experimental studies in Precambrian paleontology: Structural and chemical changes in blue-green algae during simulated fossilization in synthetic chert , 1976 .

[57]  M. Walter Geyserites of Yellowstone national park: an example of abiogenic "stromatolites" , 1976 .

[58]  E. T. Allen The agency of algae in the deposition of travertine and silica from thermal waters , 1934 .