Advances in the modeling of laminated plates

Abstract A review of refined two-dimensional theories and computational models of laminated composite plates is presented. The classical and various shear deformation plate theories are presented, and recent research in these areas is reviewed. A generalization of refined theories is proposed and it's special forms are discussed. Computational aspects of the displacement finite element models of the refined theories are reviewed.

[1]  J. N. Reddy,et al.  Energy and variational methods in applied mechanics , 1984 .

[2]  J. N. Reddy,et al.  On refined computational models of composite laminates , 1989 .

[3]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[4]  J. N. Reddy,et al.  A refined nonlinear theory of plates with transverse shear deformation , 1984 .

[5]  J. Ren,et al.  A new theory of laminated plate , 1986 .

[6]  J. Whitney,et al.  Shear Correction Factors for Orthotropic Laminates Under Static Load , 1973 .

[7]  A. B. Basset On the Extension and Flexure of Cylindrical and Spherical Thin Elastic Shells , 1889 .

[8]  J. N. Reddy,et al.  A GENERAL NON-LINEAR THIRD-ORDER THEORY OF PLATES WITH MODERATE THICKNESS , 1990 .

[9]  Martin Cohen,et al.  The “heterosis” finite element for plate bending , 1978 .

[10]  Paul Seide,et al.  An improved approximate theory for the bending of laminated plates , 1980 .

[11]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[12]  J. N. Reddy,et al.  A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates , 1986 .

[13]  J. N. Reddy,et al.  Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .

[14]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[15]  J. Whitney,et al.  The Effect of Transverse Shear Deformation on the Bending of Laminated Plates , 1969 .

[16]  R. Christensen,et al.  A High-Order Theory of Plate Deformation—Part 2: Laminated Plates , 1977 .

[17]  J. N. Reddy,et al.  A comparison of closed-form and finite-element solutions of thick laminated anisotropic rectangular plates , 1981 .

[18]  Marco Di Sciuva,et al.  A refined transverse shear deformation theory for multilayered anisotropic plates. , 1984 .

[19]  Y. Stavsky,et al.  Elastic wave propagation in heterogeneous plates , 1966 .

[20]  J. Ren Bending of simply-supported, antisymmetrically laminated rectangular plate under transverse loading , 1987 .

[21]  E. Hinton,et al.  Reduced integration, function smoothing and non-conformity in finite element analysis (with special reference to thick plates) , 1976 .

[22]  E. Reissner,et al.  On bending of elastic plates , 1947 .

[23]  Charles W. Bert,et al.  Simplified Analysis of Static Shear Factors for Beams of NonHomogeneous Cross Section , 1973 .

[24]  E. Hinton,et al.  The finite element analysis of homogeneous and laminated composite plates using a simple higher order theory , 1986 .

[25]  J. N. Reddy,et al.  Geometrically nonlinear transient analysis of laminated composite plates , 1983 .

[26]  J. Whitney,et al.  Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .

[27]  J. N. Reddy,et al.  A penalty plate‐bending element for the analysis of laminated anisotropic composite plates , 1980 .

[28]  Tarun Kant,et al.  A higher-order theory for free vibration of unsymmetrically laminated composite and sandwich plates—finite element evaluations , 1989 .

[29]  Rakesh K. Kapania,et al.  Recent Advances in Analysis of Laminated Beams and Plates, Part II: Vibrations and Wave Propagation , 1989 .

[30]  C. Sun,et al.  A higher order theory for extensional motion of laminated composites , 1973 .

[31]  R. Averill On the behavior of shear deformable plate elements , 1989 .

[32]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[33]  E. Reissner,et al.  A Consistent Treatment of Transverse Shear Deformations in Laminated Anisotropic Plates , 1972 .

[34]  J. N. Reddy,et al.  Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory , 1986 .

[35]  J N Reddy Analysis of Layered Composite Plates Accounting for Large Deflections and Transverse Shear Strains. , 1981 .

[36]  Tarun Kant,et al.  A refined higher-order generally orthotropic C0 plate bending element , 1988 .

[37]  M. Levinson,et al.  An accurate, simple theory of the statics and dynamics of elastic plates , 1980 .

[38]  L. W. Rehfield,et al.  Toward a New Engineering Theory of Bending: Fundamentals , 1982 .

[39]  Liviu Librescu,et al.  Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures , 1975 .

[40]  Rakesh K. Kapania,et al.  Recent advances in analysis of laminated beams and plates. Part I - Sheareffects and buckling. , 1989 .

[41]  Tarun Kant,et al.  A Simple Finite Element Formulation of a Higher-order Theory for Unsymmetrically Laminated Composite Plates , 1988 .

[42]  J. N. Reddy,et al.  A review of refined theories of laminated composite plates , 1990 .

[43]  S. V. Kulkarni,et al.  Shear Correction Factors for Laminated Plates , 1979 .

[44]  L. K. Stevens,et al.  A Higher Order Theory for Free Vibration of Orthotropic, Homogeneous, and Laminated Rectangular Plates , 1984 .

[45]  J. Reddy,et al.  A mixed finite element for the analysis of laminated plates , 1983 .

[46]  M. Sathyamoorthy Effects of transverse shear and rotatory inertia on large amplitude vibration of composite plates and shells , 1987 .

[47]  R. Melosh BASIS FOR DERIVATION OF MATRICES FOR THE DIRECT STIFFNESS METHOD , 1963 .

[48]  Ozden O. Ochoa,et al.  Finite element formulation including interlaminar stress calculations , 1986 .

[49]  Gangan Prathap,et al.  Reduced integration and the shear-flexible beam element , 1982 .

[50]  A. W. Leissa,et al.  Analysis of Heterogeneous Anisotropic Plates , 1969 .

[51]  E. Reissner ON THE THEORY OF BENDING OF ELASTIC PLATES , 1944 .

[52]  Theodore H. H. Pian,et al.  Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .

[53]  Eduardo N. Dvorkin,et al.  Our discrete-Kirchhoff and isoparametric shell elements for nonlinear analysis—An assessment , 1983 .

[54]  Ji-Liang Doong,et al.  Vibration and stability of an initially stressed thick plate according to a high-order deformation theory , 1987 .

[55]  R. Christensen,et al.  A HIGH-ORDER THEORY OF PLATE DEFORMATION, PART 1: HOMOGENEOUS PLATES , 1977 .

[56]  H. Hencky,et al.  Über die Berücksichtigung der Schubverzerrung in ebenen Platten , 1947 .

[57]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[58]  Lawrence W. Rehfield,et al.  A comprehensive theory for planar bending of composite laminates , 1983 .

[59]  Ray W. Clough,et al.  Improved numerical integration of thick shell finite elements , 1971 .

[60]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[61]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[62]  Ahmed K. Noor,et al.  Assessment of Shear Deformation Theories for Multilayered Composite Plates , 1989 .

[63]  E. Reissner,et al.  Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates , 1961 .

[64]  A. V. Krishna Murty Higher order theory for vibrations of thick plates , 1977 .

[65]  J. N. Reddy,et al.  Behaviour of plate elements based on the first‐order shear deformation theory , 1990 .

[66]  J. N. Reddy,et al.  An assessment of four‐noded plate finite elements based on a generalized third‐order theory , 1992 .

[67]  Z. Rychter A Sixth-Order Plate Theory—Derivation and Error Estimates , 1987 .

[68]  E. Hinton,et al.  A study of quadrilateral plate bending elements with ‘reduced’ integration , 1978 .

[69]  Tarun Kant,et al.  Numerical analysis of thick plates , 1982 .

[70]  Robert L. Spilker,et al.  The hybrid‐stress model for thin plates , 1980 .

[71]  F. B. Hildebrand,et al.  Notes on the foundations of the theory of small displacements of orthotropic shells , 1949 .