Photoluminescence Studies of Sequentially Mg and H Ion-implanted GaN with Various Implantation Depths and Crystallographic Planes

GaN is one of the promising candidates for the use in high-power electronic devices 1) operating at high frequencies, and normally-off GaN-based transistors on freestanding (FS) GaN substrates with low specific on-state resistances (~1.0 mΩ•cm 2) and high off-state breakdown voltage (>1.7 kV) have been demonstrated. 2 – 4) One of the challenging issues for producing such devices at low cost is the control of conductivity type and conductivity at designated segments using an ion-implantation (I/I) technique. Especially, p-type doping by Mg-I/I has been difficult 5 – 8) because donor-type defects introduced by I/I and/or donor impurities such as O or Si diffused from the protective overlayer during post-implantation annealing (PIA) 7) likely compensate holes.