Relaxed Polar Codes

Polar codes are the latest breakthrough in coding theory, as they are the first family of codes with explicit construction that provably achieve the symmetric capacity of binary-input discrete memoryless channels. Polar encoding and successive cancellation decoding have the complexities of <inline-formula> <tex-math notation="LaTeX">$N \log N$ </tex-math></inline-formula>, for code length <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula>. Although, the complexity bound of <inline-formula> <tex-math notation="LaTeX">$N \log N$ </tex-math></inline-formula> is asymptotically favorable, we report in this work methods to further reduce the encoding and decoding complexities of polar coding. The crux is to relax the polarization of certain bit-channels without performance degradation. We consider schemes for relaxing the polarization of both <italic>very good</italic> and <italic>very bad</italic> bit-channels, in the process of channel polarization. Relaxed polar codes are proved to preserve the capacity achieving property of polar codes. Analytical bounds on the asymptotic and finite-length complexity reduction attainable by relaxed polarization are derived. For binary erasure channels, we show that the computation complexity can be reduced by a factor of six, while preserving the rate and error performance. We also show that relaxed polar codes can be decoded with significantly reduced latency. For additive white Gaussian noise channels with medium code lengths, we show that relaxed polar codes can have lower error probabilities than conventional polar codes, while having reduced encoding and decoding computation complexities.

[1]  Jungwon Lee,et al.  Techniques for polar coding over multiple access channels , 2014, 2014 48th Annual Conference on Information Sciences and Systems (CISS).

[2]  Emre Telatar,et al.  Polar Codes for the Two-User Multiple-Access Channel , 2010, IEEE Transactions on Information Theory.

[3]  Peter Trifonov,et al.  Efficient Design and Decoding of Polar Codes , 2012, IEEE Transactions on Communications.

[4]  In-Cheol Park,et al.  Partially Parallel Encoder Architecture for Long Polar Codes , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  Jungwon Lee,et al.  Relaxed channel polarization for reduced complexity polar coding , 2015, 2015 IEEE Wireless Communications and Networking Conference (WCNC).

[6]  J GrossWarren,et al.  Hardware Implementation of Successive-Cancellation Decoders for Polar Codes , 2012 .

[7]  W. Marsden I and J , 2012 .

[8]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[9]  Emre Telatar,et al.  Polar Codes for the $m$-User Multiple Access Channel , 2012, IEEE Transactions on Information Theory.

[10]  Warren J. Gross,et al.  A Semi-Parallel Successive-Cancellation Decoder for Polar Codes , 2013, IEEE Transactions on Signal Processing.

[11]  Alexander Vardy,et al.  Hardware Implementation of Successive-Cancellation Decoders for Polar Codes , 2012, J. Signal Process. Syst..

[12]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[13]  Rüdiger L. Urbanke,et al.  Polar codes: Characterization of exponent, bounds, and constructions , 2009, 2009 IEEE International Symposium on Information Theory.

[14]  Alexander Vardy,et al.  Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes , 2010, IEEE Transactions on Information Theory.

[15]  Erdal Arikan,et al.  Systematic Polar Coding , 2011, IEEE Communications Letters.

[16]  Jungwon Lee,et al.  Binary Polar Codes are Optimized Codes for Bitwise Multistage Decoding , 2016, ArXiv.

[17]  Jungwon Lee,et al.  Compound polar codes , 2013, 2013 Information Theory and Applications Workshop (ITA).

[18]  Michael Gastpar,et al.  Polar Codes for Broadcast Channels , 2013, IEEE Transactions on Information Theory.

[19]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[20]  Alexander Vardy,et al.  Fast Polar Decoders: Algorithm and Implementation , 2013, IEEE Journal on Selected Areas in Communications.

[21]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[22]  Jungwon Lee,et al.  Performance Limits and Practical Decoding of Interleaved Reed-Solomon Polar Concatenated Codes , 2013, IEEE Transactions on Communications.

[23]  Ilya Dumer,et al.  Recursive constructions and their maximum likelihood decoding , 2017, ArXiv.

[24]  Jungwon Lee,et al.  Fast multi-dimensional polar encoding and decoding , 2014, 2014 Information Theory and Applications Workshop (ITA).

[25]  Jungwon Lee,et al.  Polar Coding for Bit-Interleaved Coded Modulation , 2016, IEEE Transactions on Vehicular Technology.

[26]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[27]  Rüdiger L. Urbanke,et al.  Universal polar codes , 2013, 2014 IEEE International Symposium on Information Theory.

[28]  Kai Chen,et al.  CRC-Aided Decoding of Polar Codes , 2012, IEEE Communications Letters.

[29]  Frank R. Kschischang,et al.  A Simplified Successive-Cancellation Decoder for Polar Codes , 2011, IEEE Communications Letters.

[30]  Norbert Stolte,et al.  Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung , 2002 .

[31]  Eren Sasoglu,et al.  Polar codes for the two-user binary-input multiple-access channel , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[32]  Emre Telatar,et al.  Polar Codes for the m-User MAC , 2010 .

[33]  Kai Chen,et al.  Polar codes: Primary concepts and practical decoding algorithms , 2014, IEEE Communications Magazine.

[34]  Jungwon Lee,et al.  Achieving the Uniform Rate Region of General Multiple Access Channels by Polar Coding , 2013, IEEE Transactions on Communications.

[35]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[36]  Emmanuel Abbe,et al.  Randomness and dependencies extraction via polarization , 2011, 2011 Information Theory and Applications Workshop.

[37]  Rüdiger L. Urbanke,et al.  On the scaling of polar codes: I. The behavior of polarized channels , 2010, 2010 IEEE International Symposium on Information Theory.

[38]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.