Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect

The year 2019 marks the 10th anniversary of the first report of ultrafast fiber laser mode-locked by graphene. This result has had an important impact on ultrafast laser optics and continues to offer new horizons. Herein, we mainly review the linear and nonlinear photonic properties of two-dimensional (2D) materials, as well as their nonlinear applications in efficient passive mode-locking devices and ultrafast fiber lasers. Initial works and significant progress in this field, as well as new insights and challenges of 2D materials for ultrafast fiber lasers, are reviewed and analyzed.

[1]  Yi Xie,et al.  Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. , 2013, Chemical Society reviews.

[2]  K. Abramski,et al.  Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz , 2012 .

[3]  Jianhua Ji,et al.  Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability , 2017 .

[4]  M. Pumera,et al.  2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus , 2017, Advanced materials.

[5]  Jun Zhang,et al.  Saturated absorption of different layered Bi2Se3 films in the resonance zone , 2018, Photonics Research.

[6]  Wenjun Liu,et al.  Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. , 2017, Optics letters.

[7]  Ting Wang,et al.  A flexible transparent colorimetric wrist strap sensor. , 2017, Nanoscale.

[8]  Hongli Tang,et al.  Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure , 2015 .

[9]  Jaroslaw Sotor,et al.  Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber. , 2014, Optics express.

[10]  Shuangchen Ruan,et al.  High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber , 2018 .

[11]  Junsu Lee,et al.  A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator. , 2014, Optics express.

[12]  G. Xie,et al.  Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength , 2015, 1508.04510.

[13]  F. Torrisi,et al.  Sub 200 fs pulse generation from a graphene mode-locked fiber laser , 2010, 1010.1329.

[14]  J. Coleman,et al.  Ultrafast Nonlinear Excitation Dynamics of Black Phosphorus Nanosheets from Visible to Mid-Infrared. , 2016, ACS nano.

[15]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[16]  Li Heping,et al.  Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber* , 2015 .

[17]  Yong‐Won Song,et al.  Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers , 2017, Nanotechnology.

[18]  Harith Ahmad,et al.  Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime , 2016, International Seminar on Photonics, Optics, and its Applications.

[19]  Wei Lin,et al.  Ultrafast saturable absorption in topological insulator Bi₂SeTe₂ nanosheets. , 2015, Optics express.

[20]  S. Ruan,et al.  Magnetron-sputtering deposited WTe2for an ultrafast thulium-doped fiber laser. , 2017, Optics letters.

[21]  Shuangchun Wen,et al.  Ultra-short pulse generation by a topological insulator based saturable absorber , 2012 .

[22]  Z. Zou,et al.  On-Nanowire Axial Heterojunction Design for High-Performance Photodetectors. , 2016, ACS nano.

[23]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[24]  Young In Jhon,et al.  Metallic MXene Saturable Absorber for Femtosecond Mode‐Locked Lasers , 2017, Advanced materials.

[25]  C. Liao,et al.  Polarization-locked vector solitons in a mode-locked fiber laser using polarization-sensitive few-layer graphene deposited D-shaped fiber saturable absorber , 2014 .

[26]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[27]  S. Turitsyn,et al.  Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers , 2018, Communications Physics.

[28]  Jean-Marc Merolla,et al.  Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser , 2018, Nature Photonics.

[29]  Bo Guo,et al.  2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [Invited] , 2018 .

[30]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[31]  Peiguang Yan,et al.  70-fs mode-locked erbium-doped fiber laser with topological insulator , 2016, Scientific Reports.

[32]  Meng Liu,et al.  Femtosecond pulse erbium-doped fiber laser by a few-layer MoS(2) saturable absorber. , 2014, Optics letters.

[33]  Nicolas Godbout,et al.  Z-scan measurement of the nonlinear refractive index of graphene. , 2012, Optics letters.

[34]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[35]  Jun Wang,et al.  463-MHz fundamental mode-locked fiber laser based on few-layer MoS(2) saturable absorber. , 2015, Optics letters.

[36]  S. Choi,et al.  All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber. , 2014, Optics express.

[37]  Jörg Neumann,et al.  Tm-doped mode-locked fiber lasers , 2014 .

[38]  A. Luo,et al.  Graphene-decorated microfiber knot as a broadband resonator for ultrahigh-repetition-rate pulse fiber lasers , 2018, Photonics Research.

[39]  X. M. Liu,et al.  Graphene-clad microfibre saturable absorber for ultrafast fibre lasers , 2016, Scientific Reports.

[40]  J. Leburton,et al.  Electronic structures of defects and magnetic impurities in MoS2 monolayers , 2014, Nanoscale Research Letters.

[41]  Shuangchun Wen,et al.  Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. , 2016, Optics letters.

[42]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[43]  Desheng Kong,et al.  Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. , 2012, Journal of the American Chemical Society.

[44]  Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. , 2017, Chemical Society reviews.

[45]  J. Hodges,et al.  Coherent cavity-enhanced dual-comb spectroscopy. , 2016, Optics express.

[46]  Shuangchen Ruan,et al.  Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser , 2013 .

[47]  Tian Jiang,et al.  Broadband High‐Responsivity Photodetectors Based on Large‐Scale Topological Crystalline Insulator SnTe Ultrathin Film Grown by Molecular Beam Epitaxy , 2017 .

[48]  S. Wen,et al.  Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications , 2015, Scientific Reports.

[49]  Jaroslaw Sotor,et al.  Fundamental and harmonic mode-locking at 2.1 μm with black phosphorus saturable absorber. , 2017, Optics express.

[50]  K. Abramski,et al.  Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers , 2015 .

[51]  Dianyuan Fan,et al.  Black Phosphorus Based All-Optical-Signal-Processing: Toward High Performances and Enhanced Stability , 2017 .

[52]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[53]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[54]  Qiang Wang,et al.  2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers. , 2018, Nanoscale.

[55]  Jaroslaw Sotor,et al.  Ultrafast thulium-doped fiber laser mode locked with black phosphorus. , 2015, Optics letters.

[56]  Yudong Cui,et al.  Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide , 2017, Scientific Reports.

[57]  Kian Ping Loh,et al.  Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. , 2010, Optics letters.

[58]  Yong-Won Song,et al.  Graphene mode-lockers for fiber lasers functioned with evanescent field interaction , 2010 .

[59]  Wenjun Liu,et al.  Optical properties and applications for MoS 2 -Sb 2 Te 3 -MoS 2 heterostructure materials , 2018 .

[60]  Shuangchun Wen,et al.  Broadband third order nonlinear optical responses of bismuth telluride nanosheets , 2016 .

[61]  Francisco E. Robles,et al.  Invited Review Article: Pump-probe microscopy. , 2016, The Review of scientific instruments.

[62]  Yongli Gao,et al.  Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength , 2016 .

[63]  V. Tran,et al.  Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus , 2015 .

[64]  Jaroslaw Sotor,et al.  Sub-90 fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber. , 2015, Optics express.

[65]  Y. Liu,et al.  Few‐Layer Topological Insulator for All‐Optical Signal Processing Using the Nonlinear Kerr Effect , 2015 .

[66]  J. Sotor,et al.  24 fs and 3 nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser , 2016 .

[67]  Han Zhang,et al.  MZI‐Based All‐Optical Modulator Using MXene Ti3C2Tx (T = F, O, or OH) Deposited Microfiber , 2019, Advanced Materials Technologies.

[68]  Jaroslaw Sotor,et al.  Black phosphorus saturable absorber for ultrashort pulse generation , 2015 .

[69]  Xiaodong Chen,et al.  Healable, Transparent, Room-Temperature Electronic Sensors Based on Carbon Nanotube Network-Coated Polyelectrolyte Multilayers. , 2015, Small.

[70]  Nicolas Godbout,et al.  Large nonlinear Kerr effect in graphene , 2012, 1203.5527.

[71]  Han Lin,et al.  Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. , 2017, ACS applied materials & interfaces.

[72]  Yang Huang,et al.  Strain and electric field tunable electronic structure of buckled bismuthene , 2017 .

[73]  M. Liu,et al.  2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. , 2013, Optics letters.

[74]  Feng Zhang,et al.  Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. , 2018, Optics express.

[75]  Dianyuan Fan,et al.  Few‐layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability , 2018 .

[76]  L. Liao,et al.  Metal‐Ion‐Modified Black Phosphorus with Enhanced Stability and Transistor Performance , 2017, Advanced materials.

[77]  D. Mao,et al.  Graphene Actively Mode‐Locked Lasers , 2018, Advanced Functional Materials.

[78]  Tian Jiang,et al.  Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films. , 2017, Optics express.

[79]  J. Taylor,et al.  Tm-doped fiber laser mode-locked by graphene-polymer composite. , 2012, Optics express.

[80]  Y. Gogotsi,et al.  Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes , 2018, Advanced materials.

[81]  Feng Zhang,et al.  An All‐Optical, Actively Q‐Switched Fiber Laser by an Antimonene‐Based Optical Modulator , 2019, Laser & Photonics Reviews.

[82]  Yong-Won Song,et al.  Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers , 2010 .

[83]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[84]  W. Shi,et al.  Fiber lasers and their applications [Invited]. , 2014, Applied optics.

[85]  K. Abramski,et al.  All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser. , 2015, Optics express.

[86]  Liangbi Su,et al.  Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region. , 2016, Optics express.

[87]  Linjie Zhou,et al.  High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited) , 2018 .

[88]  Yu-Chieh Chi,et al.  Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching , 2017 .

[89]  Fengqiu Wang Two-dimensional materials for ultrafast lasers* , 2017 .

[90]  J. Chen,et al.  Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers , 2017, Scientific Reports.

[91]  Vladislav V. Dvoyrin,et al.  Graphene-mode-locked Holmium Fiber Laser Operating Beyond 2.1 µm , 2015 .

[92]  J. Coleman,et al.  Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. , 2013, ACS nano.

[93]  Meng Liu,et al.  Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser. , 2015, Optics express.

[94]  Tian Jiang,et al.  Visualized charge transfer processes in monolayer composition-graded WS2xSe2(1-x) lateral heterojunctions via ultrafast microscopy mapping. , 2018, Optics express.

[95]  T. Zhu,et al.  Watt-Level Ultrafast Fiber Laser Based on Weak Evanescent Interaction With Reduced Graphene Oxide , 2016, IEEE Photonics Technology Letters.

[96]  Feng Zhang,et al.  All‐Optical Phosphorene Phase Modulator with Enhanced Stability Under Ambient Conditions , 2018 .

[97]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[98]  Xiang’ai Cheng,et al.  Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets , 2016 .

[99]  Shuangchen Ruan,et al.  A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film. , 2015, Optics express.

[100]  L. Dai,et al.  Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. , 2016, Angewandte Chemie.

[101]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[102]  D. Steinberg,et al.  Mechanically Exfoliated Graphite Onto D-Shaped Optical Fiber for Femtosecond Mode-Locked Erbium-Doped Fiber Laser , 2018, Journal of Lightwave Technology.

[103]  S. Wen,et al.  Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics. , 2014, Optics express.

[104]  Xueming Liu,et al.  Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers , 2019, Photonics Research.

[105]  Shinji Yamashita,et al.  Short pulse fiber lasers mode-locked by carbon nanotubes and graphene , 2014 .

[106]  Ting Wang,et al.  Flexible Transparent Electronic Gas Sensors. , 2016, Small.

[107]  K. Vahala,et al.  Imaging soliton dynamics in optical microcavities , 2018, Nature Communications.

[108]  Jinde Yin,et al.  Sb2Te3 mode-locked ultrafast fiber laser at 1.93 μm , 2018, Chinese Physics B.

[109]  Wood-Hi Cheng,et al.  Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber. , 2012, Optics express.

[110]  D. Fan,et al.  Few‐Layer Phosphorene‐Decorated Microfiber for All‐Optical Thresholding and Optical Modulation , 2017 .

[111]  Jing Kong,et al.  Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates , 2008 .

[112]  Dingyuan Tang,et al.  Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. , 2009, Optics express.

[113]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[114]  Jianlin Zhao,et al.  WS₂ saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm. , 2015, Optics express.

[115]  Taojian Fan,et al.  Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine , 2018, Journal of Innovative Optical Health Sciences.

[116]  S. Yamashita,et al.  A Tutorial on Nonlinear Photonic Applications of Carbon Nanotube and Graphene , 2012, Journal of Lightwave Technology.

[117]  Jungwon Kim,et al.  Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications , 2016 .

[118]  Shinji Yamashita,et al.  10 GHz fundamental mode fiber laser using a graphene saturable absorber , 2012 .

[119]  Aleksandra Przewłoka,et al.  Mapping Mode-Locking Regimes in a Polarization-Maintaining Er-Doped Fiber Laser , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[120]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[121]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[122]  Junsu Lee,et al.  Chemical Wet Etching of an Optical Fiber Using a Hydrogen Fluoride-Free Solution for a Saturable Absorber Based on the Evanescent Field Interaction , 2016, Journal of Lightwave Technology.

[123]  Jaroslaw Sotor,et al.  High-Power Fiber-Based Femtosecond CPA System at 1560 nm , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[124]  J. Qiu,et al.  Emerging Low‐Dimensional Materials for Nonlinear Optics and Ultrafast Photonics , 2017, Advanced materials.

[125]  D. Fan,et al.  Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All‐Optical Thresholding Devices , 2018 .

[126]  Zhenhua Ni,et al.  Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers , 2009, 0910.5820.

[127]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[128]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[129]  Caiyun Chen,et al.  Graphene–Bi2Te3 Heterostructure as Saturable Absorber for Short Pulse Generation , 2015 .

[130]  Jingui Ma,et al.  Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength. , 2018, Optics express.

[131]  Zhipei Sun,et al.  Graphene actively Q-switched lasers , 2017 .

[132]  S. Wen,et al.  Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime , 2015 .

[133]  H. Matsukuma,et al.  Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm. , 2018, Optics letters.

[134]  Xiaodong Chen,et al.  Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing. , 2015, Small.

[135]  Tian Jiang,et al.  Electron–phonon coupling in topological insulator Bi2Se3 thin films with different substrates , 2019, Chinese Optics Letters.

[136]  Theodor W. Hänsch,et al.  Frequency comb spectroscopy , 2019, Nature Photonics.

[137]  Lili Tao,et al.  Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. , 2019, Nanoscale.

[138]  W. Blau,et al.  Ultrafast Nonlinear Optical Properties of a Graphene Saturable Mirror in the 2 μm Wavelength Region , 2017 .

[139]  Junsu Lee,et al.  Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber. , 2016, Optics express.

[140]  Shui-Tong Lee,et al.  Pulsed Lasers Employing Solution‐Processed Plasmonic Cu3−xP Colloidal Nanocrystals , 2016, Advanced materials.

[141]  A. Luo,et al.  Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers , 2018, Chinese Physics B.

[142]  R. Lu,et al.  Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers , 2016, Scientific Reports.

[143]  K. Abramski,et al.  260 fs and 1 nJ pulse generation from a compact, mode-locked Tm-doped fiber laser. , 2015, Optics express.

[144]  P. Miró,et al.  An atlas of two-dimensional materials. , 2014, Chemical Society reviews.

[145]  Ju H. Lee,et al.  All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe_2 saturable absorber , 2017 .

[146]  Yangwei Zhang,et al.  Z-scan measurement of the nonlinear refractive index of monolayer WS(2). , 2015, Optics express.

[147]  Wenjun Liu,et al.  Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration , 2018, Nanotechnology.

[148]  Jinrong Tian,et al.  Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi₂Se₃. , 2014, Optics express.

[149]  Zhiyi Wei,et al.  Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. , 2017, Optics express.

[150]  Grzegorz Sobon,et al.  Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [Invited] , 2015 .

[151]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[152]  Yudong Cui,et al.  Real-Time Observation of the Buildup of Soliton Molecules. , 2018, Physical review letters.

[153]  Shuangchun Wen,et al.  Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. , 2015, Optics express.

[154]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[155]  D. K. Sang,et al.  Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Self‐Powered Photodetector , 2017 .

[156]  Darren D. Hudson,et al.  Invited paper: Short pulse generation in mid-IR fiber lasers , 2014 .

[157]  Junsu Lee,et al.  Mode-locked, 1.94-μm, all-fiberized laser using WS₂ based evanescent field interaction. , 2015, Optics express.

[158]  Junsu Lee,et al.  Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking , 2015 .

[159]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[160]  Kai Huang,et al.  A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors , 2017 .

[161]  D. Fan,et al.  Broadband Nonlinear Photonics in Few‐Layer MXene Ti3C2Tx (T = F, O, or OH) , 2018 .

[162]  J. Sotor,et al.  Sb 2 Te 3 -deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers , 2016 .

[163]  Jinde Yin,et al.  α-In2Se3 wideband optical modulator for pulsed fiber lasers. , 2018, Optics letters.

[164]  E. Aktürk,et al.  Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties , 2016 .

[165]  Meng Zhang,et al.  A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect , 2019, Journal of Materials Chemistry C.

[166]  N. Peyghambarian,et al.  Graphene Mode-Locked Fiber Laser at 2.8 $\mu \text{m}$ , 2016, IEEE Photonics Technology Letters.