Rule-based modeling of biochemical networks

A method for the automatic generation of mathematical/computational models that account comprehensively and precisely for the full spectrum of chemical species implied by user-specified activities, potential modifications and interactions of the molecular components of biomolecules is described. A computer-implemented system that includes software was used to generate models. The software has a user interface that allows a user to generate new models and modify existing models.

[1]  B. L. Clarke Stability of Complex Reaction Networks , 2007 .

[2]  H. S. Warren,et al.  Toll-like receptors. , 2005, Critical care medicine.

[3]  William S. Hlavacek,et al.  Graphical rule-based representation of signal-transduction networks , 2005, SAC '05.

[4]  Roger Brent,et al.  Automatic generation of cellular reaction networks with Moleculizer 1.0 , 2005, Nature Biotechnology.

[5]  M L Blinov,et al.  Combinatorial complexity and dynamical restriction of network flows in signal transduction. , 2004, Systems biology.

[6]  William S. Hlavacek,et al.  BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains , 2004, Bioinform..

[7]  E. Pålsson-McDermott,et al.  Signal transduction by the lipopolysaccharide receptor, Toll‐like receptor‐4 , 2004, Immunology.

[8]  Vincent Danos,et al.  Modeling and querying biomolecular interaction networks , 2004, Theor. Comput. Sci..

[9]  M Hucka,et al.  Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. , 2004, Systems biology.

[10]  Winfried Kurth,et al.  A Graph Grammar Approach to Artificial Life , 2004, Artificial Life.

[11]  Hong Li,et al.  Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. , 2004, The Journal of chemical physics.

[12]  Arup K Chakraborty,et al.  CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse , 2004, Nature Immunology.

[13]  Camille Rosenthal-Sabroux,et al.  Using the Unified Modelling Language (UML) to guide the systemic description of biological processes and systems. , 2004, Bio Systems.

[14]  Jason A. Papin,et al.  The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. , 2004, Biophysical journal.

[15]  R. Carter,et al.  Binding of Cytoplasmic Proteins to the CD19 Intracellular Domain Is High Affinity, Competitive, and Multimeric1 , 2004, The Journal of Immunology.

[16]  Eric Klavins,et al.  Graph grammars for self assembling robotic systems , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[17]  Justin A. Ionita,et al.  Metabolic networks: enzyme function and metabolite structure. , 2004, Current opinion in structural biology.

[18]  W. S. Hlavacek,et al.  Mathematical and computational models of immune-receptor signalling , 2004, Nature Reviews Immunology.

[19]  Jason A. Papin,et al.  Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. , 2004, Journal of theoretical biology.

[20]  B Robert Franza From Play to Laws: Language in Biology , 2004, Science's STKE.

[21]  John N Weinstein,et al.  Molecular Interaction Maps--A Diagrammatic Graphical Language for Bioregulatory Networks , 2004, Science's STKE.

[22]  A. Kierzek,et al.  Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. , 2004, Biophysical journal.

[23]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[24]  D. Baker,et al.  Realistic protein–protein association rates from a simple diffusional model neglecting long‐range interactions, free energy barriers, and landscape ruggedness , 2004, Protein science : a publication of the Protein Society.

[25]  James R Faeder,et al.  The complexity of complexes in signal transduction , 2003, Biotechnology and bioengineering.

[26]  Muruhan Rathinam,et al.  Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method , 2003 .

[27]  Linda R. Petzold,et al.  Improved leap-size selection for accelerated stochastic simulation , 2003 .

[28]  Peter F. Stadler,et al.  Generic Properties of Chemical Networks: Artificial Chemistry Based on Graph Rewriting , 2003, ECAL.

[29]  Carolyn L. Talcott,et al.  Pathway logic modeling of protein functional domains in signal transduction , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[30]  T. Bártfai,et al.  A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responses , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Peter F. Stadler,et al.  A Graph-Based Toy Model of Chemistry , 2003, J. Chem. Inf. Comput. Sci..

[32]  S. V. Aksenov,et al.  A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. , 2003, Journal of molecular biology.

[33]  T. Pawson,et al.  Assembly of Cell Regulatory Systems Through Protein Interaction Domains , 2003, Science.

[34]  Cosimo Laneve,et al.  Core Formal Molecular Biology , 2003, ESOP.

[35]  W. S. Hlavacek,et al.  Investigation of Early Events in FcεRI-Mediated Signaling Using a Detailed Mathematical Model1 , 2003, The Journal of Immunology.

[36]  Bruce E. Shapiro,et al.  Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations , 2003, Bioinform..

[37]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[38]  Cosimo Laneve,et al.  Graphs for Core Molecular Biology , 2003, CMSB.

[39]  Dennis Bray,et al.  Molecular Prodigality , 2003, Science.

[40]  Raymond S H Yang,et al.  BioMOL: a computer-assisted biological modeling tool for complex chemical mixtures and biological processes at the molecular level. , 2002, Environmental health perspectives.

[41]  William S. Hlavacek,et al.  Modeling the early signaling events mediated by FcepsilonRI. , 2002, Molecular immunology.

[42]  Antonella Zanobetti,et al.  The concentration-response relation between PM(2.5) and daily deaths. , 2002, Environmental health perspectives.

[43]  Ilya A Vakser,et al.  Docking of protein models , 2002, Protein science : a publication of the Protein Society.

[44]  François Fages,et al.  Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM , 2002 .

[45]  Rebecca C Wade,et al.  Biomolecular diffusional association. , 2002, Current opinion in structural biology.

[46]  M. Sternberg,et al.  Prediction of protein-protein interactions by docking methods. , 2002, Current opinion in structural biology.

[47]  José Meseguer,et al.  Pathway Logic: Symbolic Analysis of Biological Signaling , 2001, Pacific Symposium on Biocomputing.

[48]  A. Arkin Synthetic cell biology. , 2001, Current opinion in biotechnology.

[49]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[50]  K. Sada,et al.  Structure and function of Syk protein-tyrosine kinase. , 2001, Journal of biochemistry.

[51]  S. Akira,et al.  Toll-like receptors: critical proteins linking innate and acquired immunity , 2001, Nature Immunology.

[52]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[53]  Nicolas Le Novère,et al.  STOCHSIM: modelling of stochastic biomolecular processes , 2001, Bioinform..

[54]  K. Kohn Molecular interaction maps as information organizers and simulation guides. , 2001, Chaos.

[55]  R. Brent,et al.  Modelling cellular behaviour , 2001, Nature.

[56]  Aviv Regev,et al.  Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra , 2000, Pacific Symposium on Biocomputing.

[57]  Jean-Loup Faulon,et al.  Stochastic Generator of Chemical Structure. 3. Reaction Network Generation , 2000, J. Chem. Inf. Comput. Sci..

[58]  J. Hörber,et al.  Sphingolipid–Cholesterol Rafts Diffuse as Small Entities in the Plasma Membrane of Mammalian Cells , 2000, The Journal of cell biology.

[59]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[60]  T. Hunter,et al.  Signaling—2000 and Beyond , 2000, Cell.

[61]  W. Webb,et al.  Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. , 1999, Biophysical journal.

[62]  B. Kholodenko,et al.  Quantification of Short Term Signaling by the Epidermal Growth Factor Receptor* , 1999, The Journal of Biological Chemistry.

[63]  Jean-Loup Faulon,et al.  Isomorphism, Automorphism Partitioning, and Canonical Labeling Can Be Solved in Polynomial-Time for Molecular Graphs , 1998, J. Chem. Inf. Comput. Sci..

[64]  S. Shoelson,et al.  Tandem SH2 Domains Confer High Specificity in Tyrosine Kinase Signaling* , 1998, The Journal of Biological Chemistry.

[65]  C. J.,et al.  Predicting Temporal Fluctuations in an Intracellular Signalling Pathway , 1998 .

[66]  B. Goldstein,et al.  Exploiting the difference between intrinsic and extrinsic kinases: implications for regulation of signaling by immunoreceptors. , 1997, Journal of immunology.

[67]  D. Bray,et al.  Computer-based analysis of the binding steps in protein complex formation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[68]  D A Lauffenburger,et al.  Physical modulation of intracellular signaling processes by locational regulation. , 1997, Biophysical journal.

[69]  D. Lauffenburger,et al.  Receptors: Models for Binding, Trafficking, and Signaling , 1993 .

[70]  J. Erickson,et al.  The effect of receptor density on the forward rate constant for binding of ligands to cell surface receptors. , 1987, Biophysical journal.

[71]  W. Webb,et al.  Cross-linking of receptor-bound IgE to aggregates larger than dimers leads to rapid immobilization , 1986, The Journal of cell biology.

[72]  W. Webb,et al.  Clustering, mobility, and triggering activity of small oligomers of immunoglobulin E on rat basophilic leukemia cells , 1986, The Journal of cell biology.

[73]  Alan S. Perelson,et al.  Some mathematical models of receptor clustering by multivalent ligands , 1984 .

[74]  Z. Y. Liu,et al.  Lateral electromigration and diffusion of Fc epsilon receptors on rat basophilic leukemia cells: effects of IgE binding , 1984, The Journal of cell biology.

[75]  Joel Keizer,et al.  Nonequilibrium statistical thermodynamics and the effect of diffusion on chemical reaction rates , 1982 .

[76]  D. E. Wolf,et al.  Effect of bleaching light on measurements of lateral diffusion in cell membranes by the fluorescence photobleaching recovery method. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[77]  R. Zahler Enzyme Structure and Mechanism , 1979, The Yale Journal of Biology and Medicine.

[78]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[79]  H. Berg,et al.  Physics of chemoreception. , 1977, Biophysical journal.

[80]  A. Fersht Enzyme structure and mechanism , 1977 .

[81]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[82]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[83]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[84]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[85]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .