A bradykinin antagonist and a caspase inhibitor prevent severe pulmonary hypertension in a rat model.

Chronically hypoxic rats (exposed to 5000 m elevation for 3 weeks) develop pulmonary hypertension (PH) that is reversed upon return to normoxia and is blocked by bradykinin (BK) antagonist B9430 treatment (100 microg/kg s.c. three times per week). Treatment of rats with both the synthetic VEGF receptor-1/2 antagonist 3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-indolin-2-one (SU5416) (200 mg/kg, single s.c. injection) and hypoxia (3 weeks) causes irreversible severe PH characterized by marked elevation of pulmonary artery pressure (PAP), right ventricular hypertrophy, and obliteration of pulmonary arteries by proliferating endothelial cells (EC). Between weeks I and 2 of treatment, there is increased apoptotic EC death and caspase-3 activity. The combination of hypoxia with VEGFR-1 and -2 blockade appears to cause death of normal lung EC and proliferation of an apoptosis-resistant proliferating EC phenotype. Cotreatment with BK antagonist B9430 and (or) the broad caspase inhibitor Z-Asp-2,6-dichlorobenzoyloxymethylketone (Z-Asp) (2 mg/kg three times per week) prevented development of severe PH and caused significant reduction of PAP: 39.7 +/- 4.6 mmHg in Z-Asp + SU5416, 37.1 +/- 1.2 mmHg in BK antagonist B9430 + SU5416, 27.2 +/- 0.7 mmHg in Z-Asp alone, and 36.6 +/- 3.0 mmHg in BK antagonist alone versus 48 +/- 1.7 mmHg in SU5416-treated rats and 32.8 +/-1.4 mmHg in vehicle-treated controls. The PAP correlated with the right ventricular mass. Pulmonary arteries of rats treated with Z-Asp and BK antagonist B9430 had a marked reduction of intravascular EC, yet there was still evidence of medial muscular hypertrophy, similar to that observed in chronically hypoxic rats not treated with SU5416. We conclude that EC death induced by VEGFR-2 blockade with SU5416 may trigger an EC selection process that allows for the expansion of apoptosis-resistant EC, possibly driven by mechanisms independent of VEGF and VEGFR-2.

[1]  A. Ullrich,et al.  SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. , 1999, Cancer research.

[2]  N. Voelkel,et al.  Hypoxia-induced pulmonary vascular remodeling: a model for what human disease? , 2000, The Journal of clinical investigation.

[3]  N. Voelkel,et al.  Severe pulmonary hypertensive diseases: a perspective. , 1999, The European respiratory journal.

[4]  B. Groves,et al.  A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. , 1996, The New England journal of medicine.

[5]  N. Voelkel,et al.  Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. , 1994, American journal of respiratory cell and molecular biology.

[6]  A. Knox,et al.  Human airway smooth muscle cells secrete vascular endothelial growth factor: up‐regulation by bradykinin via a protein kinase C and prostanoid‐dependent mechanism , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  J. Stewart,et al.  Oral activity of peptide bradykinin antagonists following intragastric administration in the rat. , 1997, Canadian journal of physiology and pharmacology.

[8]  G. Semenza,et al.  Expression of angiogenesis‐related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis , 2001, The Journal of pathology.

[9]  A. Halbower,et al.  Agarose infiltration improves morphology of cryostat sections of lung. , 1994, Laboratory investigation; a journal of technical methods and pathology.

[10]  L. Maulon,et al.  Rapid Transactivation of the Vascular Endothelial Growth Factor Receptor KDR/Flk-1 by the Bradykinin B2 Receptor Contributes to Endothelial Nitric-oxide Synthase Activation in Cardiac Capillary Endothelial Cells* , 2002, The Journal of Biological Chemistry.

[11]  P. Hirth,et al.  Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death‐dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[12]  A. Ahluwalia,et al.  Kinin B1 receptors and the cardiovascular system: regulation of expression and function , 2000 .

[13]  H. Granger,et al.  The bradykinin/B1 receptor promotes angiogenesis by up‐regulation of endogenous FGF‐2 in endothelium via the nitric oxide synthase pathway , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[14]  B. Groves,et al.  Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. , 1994, The American journal of pathology.

[15]  R. L. Williams,et al.  Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. , 1999, The American journal of pathology.