State feedback control at Hopf bifurcation in an exponential RED algorithm model

In this paper, we show that a state feedback method, which has successfully been used to control unstable steady states or periodic orbits, provides a tool to control the Hopf bifurcation for a novel congestion control model, i.e., the exponential RED algorithm with a single link and single source. We choose the gain parameter as the bifurcation parameter. Without control, the bifurcation will occur early; meanwhile, the model can maintain a stationary sending rate only in a certain domain of the gain parameter. However, outside of this domain the model still possesses a stable sending rate that can be guaranteed by the state feedback control, and the onset of the undesirable Hopf bifurcation is postponed. Numerical simulations are given to justify the validity of the state feedback controller in the bifurcation control.

[1]  Van Jacobson,et al.  Random early detection gateways for congestion avoidance , 1993, TNET.

[2]  Le Hoa Nguyen,et al.  Hopf bifurcation control via a dynamic state-feedback control , 2012 .

[3]  Ali H. Nayfeh,et al.  BIFURCATIONS IN A POWER SYSTEM MODEL , 1996 .

[4]  Zhi-Hong Guan,et al.  Stability and Hopf bifurcation analysis in a TCP fluid model , 2011 .

[5]  Jinde Cao,et al.  Time-delayed feedback control of dynamical small-world networks at Hopf bifurcation , 2009 .

[6]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[7]  K Pyragas,et al.  Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Jie Zhu,et al.  Hopf bifurcation analysis in a fluid flow model of Internet congestion control algorithm , 2009 .

[9]  Richard J. Gibbens,et al.  Resource pricing and the evolution of congestion control , 1999, at - Automatisierungstechnik.

[10]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[11]  Xiaofeng Liao,et al.  Stability and Hopf bifurcation analysis in a novel congestion control model with communication delay , 2008 .

[12]  G. Feng,et al.  Hopf bifurcation control in a congestion control model via dynamic delayed feedback. , 2008, Chaos.

[13]  Zhen Chen,et al.  Hopf bifurcation Control for an Internet Congestion Model , 2005, Int. J. Bifurc. Chaos.

[14]  Lihong Huang,et al.  Linear stability and Hopf bifurcation in an exponential RED algorithm model , 2010 .

[15]  V Flunkert,et al.  Beyond the odd number limitation: a bifurcation analysis of time-delayed feedback control. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Hua O. Wang,et al.  Bifurcation control of a chaotic system , 1995, Autom..

[17]  Jie Zhu,et al.  Controlling Hopf bifurcation in Fluid Flow Model of Internet Congestion Control System , 2009, Int. J. Bifurc. Chaos.

[18]  Qun Liu,et al.  Hopf bifurcation analysis for congestion control with heterogeneous delays , 2010 .

[19]  Jinde Cao,et al.  Bifurcation Control of a Congestion Control Model via State Feedback , 2013, Int. J. Bifurc. Chaos.

[20]  J. Hale Theory of Functional Differential Equations , 1977 .

[21]  Steven H. Low,et al.  REM: active queue management , 2001, IEEE Netw..

[22]  Chuandong Li,et al.  Necessary and sufficient conditions for Hopf bifurcation in exponential RED algorithm with communication delay , 2008 .

[23]  Zhi-Hong Guan,et al.  Hopf bifurcation control in the XCP for the Internet congestion control system , 2012 .

[24]  Feng Liu,et al.  Impulsive control of bifurcations , 2009, Math. Comput. Simul..

[25]  Guanrong Chen,et al.  Bifurcation Control: Theories, Methods, and Applications , 2000, Int. J. Bifurc. Chaos.

[26]  Guanrong Chen,et al.  Hopf bifurcation Control Using Nonlinear Feedback with Polynomial Functions , 2004, Int. J. Bifurc. Chaos.

[27]  Guanrong Chen,et al.  Hopf bifurcation in an Internet congestion control model , 2004 .

[28]  Zaitang Huang,et al.  The stochastic stability and bifurcation behavior of an Internet congestion control model , 2011, Math. Comput. Model..

[29]  Alberto Tesi,et al.  Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics , 1996, Autom..

[30]  Jinde Cao,et al.  Delayed feedback-based bifurcation control in an Internet congestion model , 2007 .

[31]  Morteza Analoui,et al.  Hopf bifurcation analysis on an Internet congestion control system of arbitrary dimension with communication delay , 2010 .

[32]  Rayadurgam Srikant,et al.  Analysis and design of an adaptive virtual queue (AVQ) algorithm for active queue management , 2001, SIGCOMM.

[33]  E. Abed,et al.  Local feedback stabilization and bifurcation control, I. Hopf bifurcation , 1986 .