Multidimensional coupling in a human knee model

List of Symbols 1 Introduction 2 Biomechanics of the Human Knee 2.1 Structure and Function of the Human Knee Joint 2.2 Bones 2.3 Ligaments 2.4 The Attachment of Ligaments to Bone 2.5 The Problem of Getting Material Parameters 3 Two-Body Contact Problems on Domains with Curved Boundaries 3.1 Linear Elasticity 3.2 Two-Body Contact in Linear Elasticity 3.3 Discretization Using Mortar Elements 3.4 The Truncated Nonsmooth Newton Multigrid Algorithm 3.5 Implementing the Contact Mapping 3.6 Creating and Using Parametrized Boundaries 3.7 Hierarchical A Posteriori Error Estimation 3.8 Contact between the Human Femur and Tibia 4 Cosserat Rods as Models for Ligaments 4.1 Riemannian Manifolds, Lie Groups, and SO(3) 4.2 Cosserat Rods 4.3 Geodesic Finite Element Spaces 4.4 Riemannian Trust-Region Solvers 4.5 A Trust-Region Solver for the Cosserat Rod with Hyperelastic Material 4.6 Numerical Results 5 Coupling Rods and Three-Dimensional Objects 5.1 Homogeneous Coupling in Nonlinear Elasticity 5.2 Heterogeneous Coupling Conditions 5.3 A Dirichlet–Neumann Algorithm 5.4 Existence of Solutions of the Heterogeneous Problem 5.5 Numerical Results 6 Software Issues and Numerical Results 6.1 The Distributed and Unified Numerics Environment (Dune) 6.2 Two-Body Contact and Ligaments A The Derivatives of the Strains of a Cosserat Rod Bibliography

[1]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[2]  Hwj Rik Huiskes,et al.  A detailed comparison of experimental and theoretical stress-analysis of a human femur , 1983 .

[3]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[4]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[5]  L Blankevoort,et al.  Ligament-bone interaction in a three-dimensional model of the knee. , 1991, Journal of biomechanical engineering.

[6]  Günter Leugering,et al.  Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures , 1994 .

[7]  Karl Kunisch,et al.  Generalized Newton methods for the 2D-Signorini contact problem with friction in function space , 2005 .

[8]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic variational inequalities , 1996 .

[9]  Rolf Krause From inexact active set strategies to nonlinear multigrid methods , 2006 .

[10]  Martin Rumpf,et al.  A variational approach to optimal meshes , 1996 .

[11]  William H. Press,et al.  Numerical recipes , 1990 .

[12]  R. Kornhuber,et al.  Adaptive multigrid methods for Signorini’s problem in linear elasticity , 2001 .

[13]  R. Adler,et al.  Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .

[14]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[15]  C Kober,et al.  Consideration of anisotropic elasticity minimizes volumetric rather than shear deformation in human mandible , 2006, Computer methods in biomechanics and biomedical engineering.

[16]  C B Frank,et al.  Stress governs tissue phenotype at the femoral insertion of the rabbit MCL. , 1995, Journal of biomechanics.

[17]  Lori A. Freitag,et al.  Users manual for Opt-MS : local methods for simplicial mesh smoothing and untangling. , 1999 .

[18]  J A Weiss,et al.  Computational modeling of ligament mechanics. , 2001, Critical reviews in biomedical engineering.

[19]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[20]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[21]  W. Han,et al.  Contact problems in elasticity , 2002 .

[22]  Barbara I. Wohlmuth An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes , 2007, J. Sci. Comput..

[23]  Carlo Sansour,et al.  Multiplicative updating of the rotation tensor in the finite element analysis of rods and shells – a path independent approach , 2003 .

[24]  Benjamin J. Ellis,et al.  Three-dimensional finite element modeling of ligaments: technical aspects. , 2005, Medical engineering & physics.

[25]  D R Carter,et al.  Cycle-dependent and time-dependent bone fracture with repeated loading. , 1983, Journal of biomechanical engineering.

[26]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[27]  R. Robinson,et al.  Morphology of the osteon. An electron microscopic study. , 1966, The Journal of bone and joint surgery. American volume.

[28]  D. Kinderlehrer,et al.  Existence, uniqueness, and regularity results for the two-body contact problem , 1987 .

[29]  Jens Markus Melenk,et al.  Mortar methods with curved interfaces , 2005 .

[30]  R. Kornhuber Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .

[31]  I. Holopainen Riemannian Geometry , 1927, Nature.

[32]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[33]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[34]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[35]  W C Van Buskirk,et al.  A continuous wave technique for the measurement of the elastic properties of cortical bone. , 1984, Journal of biomechanics.

[36]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[37]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[38]  G. Bergmann,et al.  Hip contact forces and gait patterns from routine activities. , 2001, Journal of biomechanics.

[39]  Philippe G. Ciarlet,et al.  Junctions between three-dimensional and two-dimensional linearly elastic structures , 1989 .

[40]  C. Milgrom,et al.  Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. , 2007, Journal of biomechanics.

[41]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[42]  K. Gallivan,et al.  Convergence analysis of Riemannian trust-region methods , 2006 .

[43]  Christian Wieners,et al.  Criteria for the approximation property for multigrid methods in nonnested spaces , 2004, Math. Comput..

[44]  Ralf Kornhuber,et al.  Multigrid Methods for Obstacle Problems , 2008 .

[45]  Cecil G. Armstrong,et al.  Coupling 1D Beams to 3D Bodies , 1998, IMR.

[46]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[47]  Andreas Veeser,et al.  Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..

[48]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .

[49]  F. Sebastian Grassia,et al.  Practical Parameterization of Rotations Using the Exponential Map , 1998, J. Graphics, GPU, & Game Tools.

[50]  Peter Bastian,et al.  The Iterative Solver Template Library , 2006, PARA.

[51]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[52]  Ralf Kornhuber,et al.  A monotone multigrid solver for two body contact problems in biomechanics , 2007 .

[53]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[54]  R. Krause,et al.  Automatic construction of boundary parametrizations for geometric multigrid solvers , 2006 .

[55]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[56]  F. Bornemann,et al.  Adaptive multivlevel methods in three space dimensions , 1993 .