On lengths of words in context-free languages

We consider slender languages, that is, languages for which the number of words of the same length is bounded from above by a constant. We prove that the slenderness problem is decidable for context-free languages and that the maximal number of words of the same length in a given context-free language is computable. Some effective representations of slender context-free languages, as well as other related decidability problems are investigated.

[1]  Juha Honkala,et al.  A decision method for Parikh slenderness of context-free languages , 1996 .

[2]  Cori Robert Combinatorics on words: Words and Trees , 1997 .

[3]  Gheorghe Paun,et al.  Decision Problems Concerning the Thinness of DOL Languages , 1992, Bull. EATCS.

[4]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[5]  Juha Honkala,et al.  Decision problems concerning thinness and slenderness of formal languages , 1998, Acta Informatica.

[6]  Danny Raz Length Considerations in Context-Free Languages , 1997, Theor. Comput. Sci..

[7]  Jeffrey Shallit,et al.  Numeration Systems, Linear Recurrences, and Regular Sets , 1994, Inf. Comput..

[8]  Juha Honkala,et al.  On Parikh Slender Languages and Power Series , 1996, J. Comput. Syst. Sci..

[9]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[10]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[11]  Cristian S. Calude,et al.  Language-theoretic Complexity of Disjunctive Sequences , 1997, Discret. Appl. Math..

[12]  Gheorghe Paun,et al.  Language-theoretic problems arising from Richelieu cryptosystems , 1993, Theor. Comput. Sci..

[13]  Arto Salomaa,et al.  Slender 0L Languages , 1996, Theor. Comput. Sci..

[14]  Gheorghe Paun,et al.  Thin and Slender Languages , 1995, Discret. Appl. Math..

[15]  Jeffrey Shallit,et al.  Characterizing Regular Languages with Polynomial Densities , 1992, MFCS.

[16]  Danny Raz On Slender Context-free Languages , 1995, STACS.

[17]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[18]  S. Ginsburg,et al.  Bounded -like languages , 1964 .

[19]  Arto Salomaa,et al.  Formal languages , 1973, Computer science classics.

[20]  Juha Honkala On Images of Algebraic Series , 1996, J. Univers. Comput. Sci..

[21]  Lucian Ilie On a Conjecture about Slender Context-Free Languages , 1994, Theor. Comput. Sci..

[22]  S. Ginsburg,et al.  BOUNDED ALGOL-LIKE LANGUAGES^) , 1964 .

[23]  Gheorghe Paun,et al.  Closure Properties of Slender Languages , 1993, Theor. Comput. Sci..

[24]  Christian Choffrut,et al.  Combinatorics of Words , 1997, Handbook of Formal Languages.