Dynamic Single-Use Bioreactors Used in Modern Liter- and m(3)- Scale Biotechnological Processes: Engineering Characteristics and Scaling Up.

During the past 10 years, single-use bioreactors have been well accepted in modern biopharmaceutical production processes targeting high-value products. Up to now, such processes have mainly been small- or medium-scale mammalian cell culture-based seed inoculum, vaccine or antibody productions. However, recently first attempts have been made to modify existing single-use bioreactors for the cultivation of plant cells and tissue cultures, and microorganisms. This has even led to the development of new single-use bioreactor types. Moreover, due to safety issues it has become clear that single-use bioreactors are the "must have" for expanding human stem cells delivering cell therapeutics, the biopharmaceuticals of the next generation. So it comes as no surprise that numerous different dynamic single-use bioreactor types, which are suitable for a wide range of applications, already dominate the market today. Bioreactor working principles, main applications, and bioengineering data are presented in this review, based on a current overview of greater than milliliter-scale, commercially available, dynamic single-use bioreactors. The focus is on stirred versions, which are omnipresent in R&D and manufacturing, and in particular Sartorius Stedim's BIOSTAT family. Finally, we examine development trends for single-use bioreactors, after discussing proven approaches for fast scaling-up processes.

[1]  Cornelia Kasper,et al.  Bioreactor Systems for Tissue Engineering , 2009 .

[2]  M. Bal,et al.  Strategies for rapid production of therapeutic proteins in mammalian cells , 2012 .

[3]  Andreas Deppe,et al.  Zum Verständnis der hydrodynamischen Beanspruchung von Partikeln in turbulenten Rührerströmungen , 2000 .

[4]  Mark J.H. Simmons,et al.  Mixing studies in a model aerated bioreactor equipped with an up-or a down-pumping 'Elephant Ear' agitator : Power, hold-up and aerated flow field measurements , 2009 .

[5]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[6]  K. Schügerl Bioreaktoren und periphere Einrichtungen. Ein Leitfaden für die Hochschulausbildung, für Hersteller und Anwender. Von W. Storhas. Fried. Vieweg & Sohn Verlag, Braunschweig-Wiesbaden 1994. 377 S. mit 250 Abb. u. 57 Tab., DM 78,–. , 1995 .

[7]  Jörg Kauling,et al.  Möglichkeiten und Grenzen von Disposable‐Technologien in biopharmazeutischen Verfahren , 2012 .

[8]  Dirk Lütkemeyer,et al.  Evaluation of a disposable stirred tank bioreactor for cultivation of mammalian cells , 2011, BMC proceedings.

[9]  Catherine Gorle,et al.  Stack gas dispersion measurements with large-scale PIV, aspiration probes and light scattering techniques and comparison with CFD , 2009 .

[10]  Marko Zlokarnik,et al.  Scale-Up in Chemical Engineering: Second, Completely Revised and Extended Edition , 2002 .

[11]  Tobias Merseburger,et al.  An Introduction to the Validation and Qualification of Disposables Used in Biomanufacture—A User's Perspective , 2011 .

[12]  Raymond E. Spier.,et al.  Encyclopedia of cell technology , 2000 .

[13]  H. Rischer,et al.  Wave‐Mixed and Orbitally Shaken Single‐Use Photobioreactors for Diatom Algae Propagation , 2013 .

[14]  Matthias Kraume Mischen und Rühren: Grundlagen und moderne Verfahren , 2005 .

[15]  Regine Eibl,et al.  Bioreactors for Mammalian Cells: General Overview , 2009 .

[16]  Hu Zhang,et al.  Computational‐fluid‐dynamics (CFD) analysis of mixing and gas–liquid mass transfer in shake flasks , 2005, Biotechnology and applied biochemistry.

[17]  Florian M Wurm,et al.  Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[18]  Vijay P. Singh,et al.  Disposable bioreactor for cell culture using wave-induced agitation , 1999, Cytotechnology.

[19]  Dieter Eibl,et al.  CFD for Characterizing Standard and Single-use Stirred Cell Culture Bioreactors , 2011 .

[20]  Regine Eibl,et al.  Bioengineering Parameters for Single‐Use Bioreactors: Overview and Evaluation of Suitable Methods , 2013 .

[21]  Yasuomi Ibaraki,et al.  Plant Tissue Culture Engineering , 2008 .

[22]  Alvin W. Nienow,et al.  An LDA study of turbulent flow in a baffled vessel agitated by a pitched blade turbine , 1991 .

[23]  Dieter Eibl,et al.  CFD as a Tool to Characterize Single‐Use Bioreactors , 2011 .

[24]  C. B. Solnordal,et al.  Measurement and CFD simulation of single-phase flow in solvent extraction pulsed column , 2006 .

[25]  Jonathan Liu,et al.  Production of cell culture (MDCK) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process , 2010, Biotechnology and bioengineering.

[26]  S. Wollny Experimentelle und numerische Untersuchungen zur Partikelbeanspruchung in gerührten (Bio-)Reaktoren , 2010 .

[27]  Marko Zlokarnik,et al.  Scale-Up in Chemical Engineering: Second, Completely Revised and Extended Edition , 2006 .

[28]  Gary J. Lye,et al.  Engineering characterisation of a stirred single-use bioreactor using PIV , 2012 .

[29]  Ralf Pörtner,et al.  Special Engineering Aspects , 2009, Cell and Tissue Reaction Engineering.

[30]  I. Marison,et al.  A new method for on-line measurement of the volumetric oxygen uptake rate in membrane aerated animal cell cultures. , 2000, Journal of biotechnology.

[31]  Olle Korsgren,et al.  Large-scale bioreactor expansion of tumor-infiltrating lymphocytes. , 2011, Journal of immunological methods.

[32]  William G. Whitford Single‐Use Systems in Animal Cell–Based Bioproduction , 2012 .

[33]  H. Henzler Influence of Stress on Cell Growth and Product Formation , 2010 .

[34]  R J Thomas,et al.  A novel automated bioreactor for scalable process optimisation of haematopoietic stem cell culture. , 2012, Journal of biotechnology.

[35]  Uwe Langer,et al.  Novel, Rotary Oscillated, Scalable Single‐Use Bioreactor Technology for the Cultivation of Animal Cells , 2013 .

[36]  Chao Yang,et al.  Experimental determination and numerical simulation of mixing time in a gas–liquid stirred tank , 2009 .

[37]  D. Eibl,et al.  Application of disposable bag bioreactors in tissue engineering and for the production of therapeutic agents. , 2009, Advances in biochemical engineering/biotechnology.

[38]  J Tramper,et al.  Lethal events during gas sparging in animal cell culture , 1991, Biotechnology and bioengineering.

[39]  Anja R. Paschedag,et al.  CFD in der Verfahrenstechnik: Allgemeine Grundlagen und mehrphasige Anwendungen , 2004 .

[40]  Carl M. Stoots,et al.  Mean velocity field relative to a Rushton turbine blade , 1995 .

[41]  Sabine Geisse,et al.  Optimisation of protein expression and establishment of the Wave Bioreactor for Baculovirus/insect cell culture , 2004, Cytotechnology.

[42]  Regine Eibl,et al.  Engineering characteristics of a single‐use stirred bioreactor at bench‐scale: The Mobius CellReady 3L bioreactor as a case study , 2011 .

[43]  Guo Zhi-zhong A New Method for on-Line Determination of the Capability Curves of Voltage Stability , 2006 .

[44]  L. Stamatatos,et al.  Improving the expression of recombinant soluble HIV Envelope glycoproteins using pseudo-stable transient transfection. , 2009, Vaccine.

[45]  Jochen Büchs,et al.  Comparison of torque method and temperature method for determination of power consumption in disposable shaken bioreactors , 2007 .

[46]  Gary J. Lye,et al.  Modelling surface aeration rates in shaken microtitre plates using dimensionless groups , 2005 .

[47]  E. Papoutsakis,et al.  Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment , 1990, Biotechnology and bioengineering.

[48]  S. Craig,et al.  GMP production and testing of Xcellerated T Cells for the treatment of patients with CLL. , 2004, Cytotherapy.

[49]  Knut Niss,et al.  hMSC Production in Disposable Bioreactors with Regards to GMP and PAT , 2013 .

[50]  J. Birch,et al.  The response of GS-NS0 myeloma cells to pH shifts and pH perturbations. , 2001, Biotechnology and bioengineering.

[51]  Dieter Eibl,et al.  Single-Use Technology in Biopharmaceutical Manufacture , 2011 .

[52]  Alvin W. Nienow,et al.  On impeller circulation and mixing effectiveness in the turbulent flow regime , 1997 .

[53]  J. Büchs,et al.  Microfluidic bioprocess control in baffled microtiter plates , 2011 .

[54]  A. Nienow,et al.  Further studies of the culture of mouse hybridomas in an agitated bioreactor with and without continuous sparging. , 1992, Journal of biotechnology.

[55]  Ralf Pörtner,et al.  Bioreactor Design and Scale-Up , 2009 .

[56]  A. Nienow Reactor Engineering in Large Scale Animal Cell Culture , 2006, Cytotechnology.

[57]  Y. Chisti,et al.  Hydrodynamic Damage to Animal Cells , 2001, Critical reviews in biotechnology.

[58]  P. Beneš,et al.  A critical review and experimental verification of the correct use of the dynamic method for the determination of oxygen transfer in aerated agitated vessels to water, electrolyte solutions and viscous liquids , 1987 .

[59]  W. J. Beek,et al.  The oxidation of aqueous sodium sulphite solutions , 1973 .

[60]  Regine Eibl,et al.  Design And Use Of The Wave Bioreactor For Plant Cell Culture , 2008 .

[62]  Thomas Noll Cells and Culture , 2010 .

[63]  Vivek V. Ranade,et al.  FLOW GENERATED BY PITCHED BLADE TURBINES I: MEASUREMENTS USING LASER DOPPLER ANEMOMETER , 1989 .

[64]  T. Ryll,et al.  Novel cholesterol feeding strategy enables a high-density cultivation of cholesterol-dependent NS0 cells in linear low-density polyethylene-based disposable bioreactors , 2012, Biotechnology Letters.

[65]  U Reichl,et al.  Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave Bioreactor microcarrier culture in 1-10 L scale. , 2007, Vaccine.

[66]  Bernd Hitzmann,et al.  Disposable Sensor Systems , 2011 .

[67]  W. Storhas,et al.  Bioreaktoren und periphere Einrichtungen , 1994 .

[68]  Alfred Luitjens,et al.  Going Fully Disposable—Current Possibilities: A Case Study from Crucell , 2011 .

[69]  F. Wurm,et al.  Determination of a scale-up factor from mixing time studies in orbitally shaken bioreactors , 2010 .

[70]  K. C. Lee,et al.  Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels , 2001 .

[71]  Zizhuo Xing,et al.  Scale‐up analysis for a CHO cell culture process in large‐scale bioreactors , 2009, Biotechnology and bioengineering.

[72]  Oscar-Werner Reif,et al.  Single‐Use Stirred Tank Reactor BIOSTAT CultiBag STR: Characterization and Applications , 2011 .

[73]  P. Roache Fundamentals of computational fluid dynamics , 1998 .

[74]  P. Neubauer,et al.  High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor , 2010, Microbial cell factories.

[75]  Rosário Oliveira,et al.  Wave characterization for mammalian cell culture: residence time distribution. , 2012, New biotechnology.

[76]  Nigel Jenkins,et al.  Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT), Dublin, Ireland, June 7-10, 2009 , 2012, ESACT Proceedings.

[77]  Michael Yianneskis,et al.  An experimental study of the steady and unsteady flow characteristics of stirred reactors , 1987, Journal of Fluid Mechanics.

[78]  V. Linek,et al.  Critical assessment of gassing‐in methods for measuring kla in fermentors , 1991, Biotechnology and bioengineering.

[79]  Stewart Craig,et al.  Comparison of a Static Process and a Bioreactor-based Process for the GMP Manufacture of Autologous Xcellerated T Cells for Clinical Trials , 2003 .

[80]  G. Greller,et al.  Bag-based rapid and safe seed-train expansion method for Trichoplusia ni suspension cells , 2011, BMC proceedings.

[81]  Jeffrey J. Chalmers,et al.  Characterization of agitation environments in 250 ml spinner vessel, 3 L, and 20 L reactor vessels used for animal cell microcarrier culture , 2004, Cytotechnology.

[82]  Regine Eibl,et al.  Innovative, non-stirred bioreactors in scales from milliliters up to 1000 liters for suspension cultures of cells using disposable bags and containers--a Swiss contribution. , 2010, Chimia.

[83]  Robert J. Thomas,et al.  Expansion of human mesenchymal stem cells on microcarriers , 2011, Biotechnology Letters.

[84]  J Büchs,et al.  Power consumption in shaking flasks on rotary shaking machines: I. Power consumption measurement in unbaffled flasks at low liquid viscosity. , 2000, Biotechnology and bioengineering.

[85]  S. Schillberg,et al.  Growth of BY‐2 Suspension Cells and Plantibody Production in Single‐Use Bioreactors , 2011 .

[86]  Alfio Quarteroni,et al.  Efficient oxygen transfer by surface aeration in shaken cylindrical containers for mammalian cell cultivation at volumetric scales up to 1000 L , 2009 .

[87]  Jochen Büchs,et al.  Advances in understanding and modeling the gas–liquid mass transfer in shake flasks , 2004 .

[88]  W. Bakker,et al.  Transfer of an adherent Vero cell culture method between two different rocking motion type bioreactors with respect to cell growth and metabolic rates , 2012 .

[89]  Octavio T. Ramírez,et al.  Bioreactor Scale-Up , 2003 .

[90]  Alfred Leder,et al.  Lasermethoden in der Strömungsmesstechnik , 2010 .

[91]  Feng Wang,et al.  High Yield of Human Monoclonal Antibody Produced by Stably Transfected Drosophila Schneider 2 Cells in Perfusion Culture Using Wave Bioreactor , 2012, Molecular Biotechnology.

[92]  Zhengming Gao,et al.  Large Eddy Simulations of Mixing Time in a Stirred Tank , 2006 .

[93]  J. Büchs,et al.  Characterisation of the gas-liquid mass transfer in shaking bioreactors. , 2001, Biochemical engineering journal.

[94]  J. Chon,et al.  Primary Clarification of Very High-Density Cell Culture Harvests By Enhanced Cell Settling , 2010 .

[95]  Julie Varley,et al.  The response of GS-NS0 myeloma cells to single and multiple pH perturbations. , 2002, Biotechnology and bioengineering.

[96]  Production of influenza H1N1 vaccine from MDCK cells using a novel disposable packed-bed bioreactor , 2013, Applied Microbiology and Biotechnology.

[97]  Sadettin S. Ozturk,et al.  Engineering challenges in high density cell culture systems , 2004, Cytotechnology.

[98]  Véronique Chotteau,et al.  Study of a recombinant CHO cell line producing a monoclonal antibody by ATF or TFF external filter perfusion in a WAVE Bioreactor™ , 2011, BMC proceedings.

[99]  Jochen Büchs,et al.  Measurement and characterization of mixing time in shake flasks , 2011 .

[100]  J. Birch,et al.  Reactor design for large scale suspension animal cell culture , 1999, Cytotechnology.

[101]  Daniel I. C. Wang,et al.  Viscous reduction of turbulent damage in animal cell culture , 1989, Biotechnology and bioengineering.

[102]  Ashraf Amanullah,et al.  Evaluation of a novel Wave Bioreactor® cellbag for aerobic yeast cultivation , 2007, Bioprocess and biosystems engineering.

[103]  H. Henzler Particle stress in bioreactors. , 2000, Advances in biochemical engineering/biotechnology.

[104]  Gary J. Lye,et al.  Engineering characterisation of a single well from 24-well and 96-well microtitre plates , 2008 .

[105]  Ralf Pörtner,et al.  Cell and Tissue Reaction Engineering , 2008 .

[106]  R. Spier,et al.  On the evaluation of gas-liquid interfacial effects on hybridoma viability in bubble column bioreactors. , 1987, Developments in biological standardization.

[107]  Mary Ann Curran,et al.  Environmental life-cycle assessment , 1996 .

[108]  Guoqing Leng,et al.  A Bioreactor System Based on a Novel Oxygen Transfer Method , 2008 .

[109]  Jeffrey J. Chalmers,et al.  Aeration, Mixing, and Hydrodynamics, Animal Cell Bioreactors , 2010 .

[110]  U von Stockar,et al.  Measurement of volumetric (OUR) and determination of specific (qO2) oxygen uptake rates in animal cell cultures. , 1998, Journal of biotechnology.

[111]  R. Dürrwald,et al.  Large pilot scale cultivation process study of adherent MDBK cells for porcine Influenza A virus propagation using a novel disposable stirred-tank bioreactor , 2011, BMC proceedings.

[112]  F. García-Ochoa,et al.  Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. , 2009, Biotechnology advances.

[113]  D. Balbuena,et al.  Disposable bioreactors: from process development to production , 2011, BMC proceedings.

[114]  A. Nienow,et al.  Control of pH in large-scale, free suspension animal cell bioreactors: alkali addition and pH excursions. , 1999, Biotechnology and bioengineering.

[115]  J Büchs,et al.  Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation. , 2001, Biotechnology and bioengineering.

[116]  S S Yim,et al.  The engineering effects of fluids flow on freely suspended biological macro-materials and macromolecules. , 2000, Advances in biochemical engineering/biotechnology.

[117]  P. Gullino,et al.  Cell Culture on Artificial Capillaries: An Approach to Tissue Growth in vitro , 1972, Science.

[118]  Jeffrey J. Chalmers,et al.  Aeration, Mixing and Hydrodynamics in Bioreactors , 2003 .

[119]  R. Deshpande,et al.  Serum-free suspensin large-scale transient transfection of CHO cells in WAVE bioreactors , 2006, Molecular biotechnology.

[120]  Pamela Wenk,et al.  Hochparallele Bioprozessentwicklung in geschüttelten Mikrobioreaktoren , 2012 .

[121]  J. Büchs,et al.  Advances in shaking technologies. , 2012, Trends in biotechnology.

[122]  R. Eibl,et al.  A New Approach for Rapid Development of Spodoptera frugiperda/BEVS-Based Processes , 2012 .

[123]  E. Papoutsakis,et al.  Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment , 2009, Biotechnology and bioengineering.

[124]  Andrew Sinclair,et al.  An environmental life cycle assessment comparison of single-use and conventional process technology for the production of monoclonal antibodies , 2013 .

[125]  Udo Reichl,et al.  Characterization of flow conditions in 2 L and 20 L wave bioreactors® using computational fluid dynamics , 2010, Biotechnology progress.

[126]  Harmeet Singh,et al.  Computational fluid dynamics for improved bioreactor design and 3D culture. , 2008, Trends in biotechnology.

[127]  Michael C. Flickinger,et al.  Encyclopedia of industrial biotechnology : bioprocess, bioseparation, and cell technology , 2010 .

[128]  Ch. Hirsch,et al.  Fundamentals Of Computational Fluid Dynamics , 2016 .

[129]  L. A. Palomares,et al.  Bioreactor Scale-Up , 2003 .

[130]  Regine Eibl,et al.  Bag bioreactor based on wave-induced motion: characteristics and applications. , 2009, Advances in biochemical engineering/biotechnology.

[131]  Pierre Proulx,et al.  Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model , 2008, Comput. Chem. Eng..

[132]  E. Papoutsakis From CHO-Cell to Stem-Cell Biotechnology, Oxygenation, and Mixing in Animal-Cell Culture : Bioreactors, Bubbles, and Cell Injury , 2009 .

[133]  D. Schmid,et al.  Plant Stem Cell Extract for Longevity of Skin and Hair , 2008 .

[134]  J. Chalmers,et al.  Study of hydrodynamics in microcarrier culture spinner vessels: A particle tracking velocimetry approach , 2000, Biotechnology and bioengineering.

[135]  Thomas Dreher,et al.  High Cell Density Escherichia coli Cultivation in Different Single-Use Bioreactor Systems , 2013 .

[136]  Mahendra K. Sharma,et al.  PROCESSES: AN OVERVIEW , 1991 .

[137]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[138]  Brian Lee,et al.  Characterization of novel pneumatic mixing for single-use bioreactor application , 2011, BMC proceedings.

[139]  Ralf Pörtner,et al.  Increase of Protein Yield in High Five Cells in a Single‐Use Perfusion Bioreactor by Medium Replacement , 2013 .

[140]  Regine Eibl,et al.  Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. , 2005, Biotechnology and bioengineering.

[141]  B. Junker Scale-up methodologies for Escherichia coli and yeast fermentation processes. , 2004, Journal of bioscience and bioengineering.

[142]  A. Nienow Impeller Selection for Animal Cell Culture , 2010 .

[143]  P. Juras Measurement and CFD Simulation of Wind-Driven Rain Using Eulerian Multiphase Model , 2014 .

[144]  Jürgen Lehmann,et al.  Scale-up of bioreactors for fermentation of mammalian cell cultures with special reference to oxygen supply and microcarrier mixing† , 1988 .

[145]  J. Büchs,et al.  Power consumption in shaking flasks on rotary shaking machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. , 2000, Biotechnology and bioengineering.

[146]  Jose C. Merchuk,et al.  Oxygen uptake rate in microbial processes: An overview , 2010 .

[147]  D. Fletcher,et al.  Single and multiphase CFD approaches for modelling partially baffled stirred vessels: comparison of experimental data with numerical predictions , 2007 .

[148]  M. Jahoda,et al.  CFD modelling of liquid homogenization in stirred tanks with one and two impellers using large eddy simulation , 2007 .

[149]  Stephan Kaiser,et al.  Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology , 2010, Applied Microbiology and Biotechnology.

[150]  C. Mason,et al.  Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor , 2012, Biotechnology Letters.

[151]  David Clark,et al.  Single‐Use (SU) Systems , 2010 .

[152]  D. Eibl,et al.  Fluid flow and cell proliferation of mesenchymal adipose-derived stem cells in small-scale, stirred, single-use bioreactors , 2013 .

[153]  Catherine Xuereb,et al.  Scale-up in laminar and transient regimes of a multi-stage stirrer, a CFD approach , 2002 .

[154]  J. Büchs,et al.  Characterization of gas-liquid mass transfer phenomena in microtiter plates. , 2003, Biotechnology and bioengineering.

[155]  Alberto Brucato,et al.  Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine , 2005 .

[156]  Wei-Shou Hu,et al.  Cell culture technology for pharmaceutical and cell-based therapies , 2005 .

[157]  Wilfried Mokwa,et al.  Microfluidic biolector—microfluidic bioprocess control in microtiter plates , 2010, Biotechnology and bioengineering.

[158]  John E. Hambor,et al.  Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing Bioengineering Strategies and Platform Technologies , 2012 .

[159]  Jay Sanyal,et al.  A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics , 2005 .

[160]  Yoshihito Kato,et al.  Power consumption and heat transfer resistance in large rotary shaking vessels , 2004 .

[161]  Shangtian Yang,et al.  A 24-microwell plate with improved mixing and scalable performance for high throughput cell cultures , 2012 .

[162]  Jiri Blazek,et al.  Computational Fluid Dynamics: Principles and Applications , 2001 .