The AETHER project: development of air-breathing electric propulsion for VLEO missions

[1]  E. Ferrato,et al.  Rarefied Flow Simulation of Conical Intake and Plasma Thruster for Very Low Earth Orbit Spaceflight , 2022, Frontiers in Physics.

[2]  C. Paissoni,et al.  Air-breathing electric propulsion: Flight envelope identification and development of control for long-term orbital stability , 2021, Acta Astronautica.

[3]  M. Cappelli,et al.  Extended channel Hall thruster for air-breathing electric propulsion , 2021, Journal of Applied Physics.

[4]  Jianjun Wu,et al.  A Comprehensive Review of Atmosphere-Breathing Electric Propulsion Systems , 2020 .

[5]  M. Sureda,et al.  The benefits of very low earth orbit for earth observation missions , 2020, Progress in Aerospace Sciences.

[6]  F. Marchioni Design and Performance Measurements of a long channel Hall thruster for air breathing electric propulsion , 2020 .

[7]  C. Paissoni,et al.  Development Status and Way Forward of SITAEL’s Air-breathing Electric Propulsion Engine , 2019, AIAA Propulsion and Energy 2019 Forum.

[8]  Hiroyuki Koizumi,et al.  The technological and commercial expansion of electric propulsion , 2019, Acta Astronautica.

[9]  T. Binder,et al.  System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster , 2018, Acta Astronautica.

[10]  A. P. Nikiforov,et al.  Air-Breathing Ramjet Electric Propulsion for Controlling Low-Orbit Spacecraft Motion to Compensate for Aerodynamic Drag , 2017 .

[11]  Francis F. Chen,et al.  Introduction to Plasma Physics and Controlled Fusion , 2015 .

[12]  Rune Floberghagen,et al.  The Deorbiting of ESA’s Gravity Mission GOCE - Spacecraft Operations in Extreme Drag Conditions , 2014 .

[13]  Kevin D. Diamant,et al.  A 2-Stage Cylindrical Hall Thruster for Air Breathing Electric Propulsion , 2010 .

[14]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[15]  Olivier Chazot,et al.  Fire II Flight Experiment Analysis by Means of a Collisional-Radiative Model , 2009 .

[16]  Anne Bourdon,et al.  Collisional-radiative model in air for earth re-entry problems , 2006 .

[17]  Howard D. Curtis,et al.  Orbital Mechanics for Engineering Students , 2005 .

[18]  Kazuhisa Fujita,et al.  Air-intake Performance Estimation of Air-breathing Ion Engines , 2004 .

[19]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[20]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[21]  F. Dullien,et al.  The flow of rarefied gases , 1962 .

[22]  C. Paissoni,et al.  Development Roadmap of SITAEL ’ s RAM-EP System IEPC-2019-886 , 2019 .

[23]  Tom Verstraete,et al.  Multidisciplinary optimization of turbomachinery components using differential evolution , 2018 .

[24]  K. Komurasaki,et al.  Analysis of Atmosphere-Breathing Electric Propulsion , 2015, IEEE Transactions on Plasma Science.

[25]  T. Magin,et al.  Ionization phenomena behind shock waves , 2012 .

[26]  Principal Investigator,et al.  ATMOSPHERIC BREATHING ELECTRIC THRUSTER FOR PLANETARY EXPLORATION , 2012 .

[27]  P. Rossetti,et al.  Experimental characterization of HET and RIT with atmospheric propellants , 2011 .

[28]  Marco Arcioni,et al.  RAM Electric Propulsion for Low Earth Orbit Operation: an ESA study. , 2007 .

[29]  Kazuhisa Fujita,et al.  Air Intake Performance of Air Breathing Ion Engines , 2004 .

[30]  M. Drinkwater,et al.  GOCE: ESA’s First Earth Explorer Core Mission , 2003 .

[31]  Ikkoh Funaki Ikkoh Funaki,et al.  Overdense Plasma Production in a Low-power Microwave Discharge Electron Source , 2001 .