DeepCLEM: automated registration for correlative light and electron microscopy using deep learning

[1]  Loic A. Royer,et al.  Content-aware image restoration: pushing the limits of fluorescence microscopy , 2018, Nature Methods.

[2]  Ricardo Henriques,et al.  Artificial intelligence for microscopy: what you should know. , 2019, Biochemical Society transactions.

[3]  Jean Salamero,et al.  eC-CLEM: flexible multidimensional registration software for correlative microscopies , 2017, Nature Methods.

[4]  Mei Zhen,et al.  Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome , 2016, Neurophotonics.

[5]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[6]  Nicola G. Jones,et al.  3D subcellular localization with superresolution array tomography on ultrathin sections of various species. , 2017, Methods in cell biology.

[7]  Johannes E. Schindelin,et al.  TrakEM2 Software for Neural Circuit Reconstruction , 2012, PloS one.

[8]  Loic A. Royer,et al.  Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction , 2018, Nature Methods.

[9]  C. Sommer,et al.  Elevated proinflammatory cytokine expression in affected skin in small fiber neuropathy , 2010, Neurology.

[10]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[11]  Li-Hao Yeh,et al.  Revealing architectural order with quantitative label-free imaging and deep learning , 2020, eLife.

[12]  Samuel J. Yang,et al.  In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images , 2018, Cell.

[13]  S. Geibel,et al.  Membrane Microdomain Disassembly Inhibits MRSA Antibiotic Resistance , 2017, Cell.