On the use of Bio-PEPA for modelling and analysing collective behaviours in swarm robotics

In this paper we analyse a swarm robotics system using Bio-PEPA. Bio-PEPA is a process algebra language originally developed to analyse biochemical systems. A swarm robotics system can be analysed at two levels: the macroscopic level, to study the collective behaviour of the system, and the microscopic level, to study the robot-to-robot and robot-to-environment interactions. In general, multiple models are necessary to analyse a system at different levels. However, developing multiple models increases the effort needed to analyse a system and raises issues about the consistency of the results. Bio-PEPA, instead, allows the researcher to perform stochastic simulation, fluid flow (ODE) analysis and statistical model checking using a single description, reducing the effort necessary to perform the analysis and ensuring consistency between the results. Bio-PEPA is well suited for swarm robotics systems: by using Bio-PEPA it is possible to model distributed systems and their space-time characteristics in a natural way. We validate our approach by modelling a collective decision-making behaviour.

[1]  G.,et al.  Majority Rule with Differential Latency : An Absorbing Markov Chain to Model Consensus , 2012 .

[2]  Mirco Tribastone,et al.  Exact Fluid Lumpability for Markovian Process Algebra , 2012, CONCUR.

[3]  Luca Bortolussi,et al.  Fluid Model Checking , 2012, CONCUR.

[4]  Eric Klavins,et al.  Setpoint regulation for stochastically interacting robots , 2009, Robotics: Science and Systems.

[5]  Alexander Scheidler,et al.  Dynamics of Majority Rule with Differential Latencies , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  William M. Spears,et al.  Agent-Based Chemical Plume Tracing Using Fluid Dynamics , 2004, FAABS.

[7]  Jane Hillston,et al.  Bio-PEPA: A framework for the modelling and analysis of biological systems , 2009, Theor. Comput. Sci..

[8]  Jane Hillston,et al.  Fluid flow approximation of PEPA models , 2005, Second International Conference on the Quantitative Evaluation of Systems (QEST'05).

[9]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[10]  Frits W. Vaandrager,et al.  Automata Learning through Counterexample Guided Abstraction Refinement , 2012, FM.

[11]  J. Deneubourg,et al.  Self-organized shortcuts in the Argentine ant , 1989, Naturwissenschaften.

[12]  Diego Latella,et al.  Modelling Non-linear Crowd Dynamics in Bio-PEPA , 2011, FASE.

[13]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[14]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[15]  Eliseo Ferrante,et al.  Swarm robotics: a review from the swarm engineering perspective , 2013, Swarm Intelligence.

[16]  Alcherio Martinoli,et al.  Modeling Swarm Robotic Systems: a Case Study in Collaborative Distributed Manipulation , 2004, Int. J. Robotics Res..

[17]  Håkan L. S. Younes,et al.  Numerical vs. statistical probabilistic model checking , 2006, International Journal on Software Tools for Technology Transfer.

[18]  Robert K. Brayton,et al.  Model-checking continuous-time Markov chains , 2000, TOCL.

[19]  Alessandro Aldini,et al.  A Process Algebraic Approach to Software Architecture Design , 2009 .

[20]  John W. Eaton,et al.  Gnu Octave Manual , 2002 .

[21]  Diego Latella,et al.  Scalable context-dependent analysis of emergency egress models , 2012, Formal Aspects of Computing.

[22]  Diego Latella,et al.  Analysing Robot Swarm Decision-Making with Bio-PEPA , 2012, ANTS.

[23]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[24]  Mauro Birattari,et al.  Property-driven design for swarm robotics , 2012, AAMAS.

[25]  Lars-Åke Fredlund,et al.  Book Review: Design and Validation of Computer Protocols by Gerard J. Holzmann (Prentice Hall, 1991) , 1991, CCRV.

[26]  Mauro Birattari,et al.  Majority Rule with Differential Latency: An Absorbing Markov Chain to Model Consensus , 2013 .

[27]  Edmund M. Clarke,et al.  Sequential circuit verification using symbolic model checking , 1991, DAC '90.

[28]  T. Kurtz Solutions of ordinary differential equations as limits of pure jump markov processes , 1970, Journal of Applied Probability.

[29]  Diego Latella,et al.  Fluid Analysis of Foraging Ants , 2012, COORDINATION.

[30]  Joost-Pieter Katoen,et al.  Process algebra for performance evaluation , 2002, Theor. Comput. Sci..

[31]  Joseph Sifakis,et al.  Model checking , 1996, Handbook of Automated Reasoning.

[32]  Clare Dixon,et al.  Analysing robot swarm behaviour via probabilistic model checking , 2012, Robotics Auton. Syst..

[33]  Clare Dixon,et al.  Towards Temporal Verification of Emergent Behaviours in Swarm Robotic Systems , 2011, TAROS.

[34]  Carron Shankland,et al.  Measles Epidemics and PEPA: An Exploration of Historic Disease Dynamics Using Process Algebra , 2012, FM.

[35]  Alcherio Martinoli,et al.  Comparing and modeling distributed control strategies for miniature self-assembling robots , 2010, 2010 IEEE International Conference on Robotics and Automation.

[36]  Christel Baier,et al.  Approximate Symbolic Model Checking of Continuous-Time Markov Chains , 1999, CONCUR.

[37]  Adam Duguid,et al.  The Bio-PEPA Tool Suite , 2009, 2009 Sixth International Conference on the Quantitative Evaluation of Systems.

[38]  Kristina Lerman,et al.  A Review of Probabilistic Macroscopic Models for Swarm Robotic Systems , 2004, Swarm Robotics.

[39]  Amos Gilat,et al.  Matlab, An Introduction With Applications , 2003 .

[40]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[41]  Vincent Nimal,et al.  Statistical Approaches for Probabilistic Model Checking , 2010 .

[42]  Christopher A. Rouff,et al.  Formal Approaches to Agent-Based Systems , 2001, Lecture Notes in Computer Science.

[43]  Jane Hillston,et al.  A Compositional Approach to Performance Modelling (Distinguished Dissertations in Computer Science) , 2005 .

[44]  Perdita Stevens,et al.  Modelling Recursive Calls with UML State Diagrams , 2003, FASE.

[45]  Gerard J. Holzmann,et al.  Design and validation of computer protocols , 1991 .

[46]  Jane Hillston,et al.  Bio-PEPA: An Extension of the Process Algebra PEPA for Biochemical Networks , 2007, FBTC@CONCUR.

[47]  Erol Sahin,et al.  Swarm Robotics: From Sources of Inspiration to Domains of Application , 2004, Swarm Robotics.

[48]  M. Ani Hsieh,et al.  Ensemble synthesis of distributed control and communication strategies , 2012, 2012 IEEE International Conference on Robotics and Automation.

[49]  Stephen Gilmore,et al.  Scalable Differential Analysis of Process Algebra Models , 2012, IEEE Transactions on Software Engineering.

[50]  Sarah M. Keating,et al.  Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. , 2004, Systems biology.

[51]  Eliseo Ferrante,et al.  Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making , 2011, Swarm Intelligence.

[52]  Michael R. Lowry,et al.  Formal Analysis of a Space-Craft Controller Using SPIN , 2001, IEEE Trans. Software Eng..