A progressive query language and interactive reasoner for information fusion support

Previous approaches in query processing do not consider queries to automatically combine results obtained from different information sources, i.e. they do not support information fusion. In this work, an approach for information fusion using a progressive query language and an interactive reasoner is for this reason introduced. The system basically consists of a query processor with fusion capability and a reasoner with learning capability. This query processor first executes a query to produce some initial results. If the initial results are uninformative, then the reasoner guided by the user creates a more elaborate query by means of some rule and returns the query to the query processor to produce a more informative answer. What is novel in our approach is that application-dependent information fusion rules can be initially specified by the user and subsequently learned by the reasoner. Examples of progressive queries are drawn from multi-sensor information fusion applications.

[1]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[2]  Ajit Narayanan,et al.  Iconic SQL: Practical Issues in the Querying of Databases through Structured Iconic Expressions , 2002, J. Vis. Lang. Comput..

[3]  Erland Jungert,et al.  Iterative Information Fusion using a Reasoner for Objects with Uninformative Belief Values , 2003 .

[4]  Shi-Kuo Chang,et al.  Evolutionary Query Processing , Fusion and Visualization , 2002 .

[5]  Kevin Knight,et al.  Unification: a multidisciplinary survey , 1989, CSUR.

[6]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[7]  Hector J. Levesque,et al.  Knowledge Representation and Reasoning , 2004 .

[8]  Erland Jungert,et al.  Querying distributed multimedia databases and data sources for sensor data fusion , 2004, IEEE Transactions on Multimedia.

[9]  Erland Jungert,et al.  Multi-sensor Information Fusion by Query Refinement , 2002, VISUAL.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  James Llinas,et al.  Handbook of Multisensor Data Fusion , 2001 .

[12]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[13]  Erland Jungert,et al.  Spatial/Temporal Query Processing for Information Fusion Applications , 2000, VISUAL.

[14]  Alia I. Abdelmoty,et al.  Qualitative Tools to Support Visual Querying in Large Spatial Databases , 2003 .

[15]  Andrea De Lucia,et al.  A Classification Framework to Support the Design of Visual Languages , 2002, J. Vis. Lang. Comput..

[16]  Suh-Yin Lee,et al.  Recent Advances in Visual Information Systems , 2002, Lecture Notes in Computer Science.

[17]  Erland Jungert,et al.  An ontology controlled data fusion process for a query language , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[18]  Weili Wu,et al.  Modeling Spatial Dependencies for Mining Geospatial Data , 2001, SDM.

[19]  Deborah L. McGuinness Ontologies for information fusion , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[20]  Jiawei Han,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[21]  Xin Li,et al.  An Interactive Visual Query Interface on Spatial / temporal Data , 2004 .

[22]  Kenneth Baclawski,et al.  A core ontology for situation awareness , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[23]  Y. C. Lee,et al.  An Iconic Query Language for Topological Relationships in GIS , 1995, Int. J. Geogr. Inf. Sci..