Numerical simulation of a modified KdV equation on the whole real axis
暂无分享,去创建一个
[1] R. Gorenflo,et al. Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.
[2] N. SIAMJ.,et al. A NEW DUAL-PETROV–GALERKIN METHOD FOR THIRD AND HIGHER ODD-ORDER DIFFERENTIAL EQUATIONS: APPLICATION TO THE KDV EQUATION∗ , 2003 .
[3] A. S. Fokas,et al. The generalized Dirichlet‐to‐Neumann map for certain nonlinear evolution PDEs , 2005 .
[4] Matthias Ehrhardt,et al. Discrete transparent boundary conditions for the Schrödinger equation , 2001 .
[5] HoudeHan,et al. EXACT NONREFLECTING BOUNDARY CONDITIONS FOR AN ACOUSTIC PROBLEM IN THREE DIMENSIONS , 2003 .
[6] A. V. Popov,et al. Implementation of transparent boundaries for numerical solution of the Schrödinger equation , 1991 .
[7] Bradley K. Alpert,et al. A Fast Algorithm for the Evaluation of Legendre Expansions , 1991, SIAM J. Sci. Comput..
[8] Jérémie Szeftel,et al. A nonlinear approach to absorbing boundary conditions for the semilinear wave equation , 2006, Math. Comput..
[9] C. S. Gardner,et al. Korteweg‐de Vries Equation and Generalizations. III. Derivation of the Korteweg‐de Vries Equation and Burgers Equation , 1969 .
[10] Marcus J. Grote,et al. Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation , 1995, SIAM J. Appl. Math..
[11] M. Ablowitz,et al. Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .
[12] C. S. Gardner,et al. Method for solving the Korteweg-deVries equation , 1967 .
[13] F. Mainardi,et al. Fractals and fractional calculus in continuum mechanics , 1997 .
[14] Christophe Besse,et al. Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations , 2006, SIAM J. Numer. Anal..
[15] Matthias Ehrhardt,et al. Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability , 2003 .
[16] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[17] Zhi-Zhong Sun,et al. The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions , 2006, J. Comput. Phys..
[18] L. Greengard,et al. Nonreflecting Boundary Conditions for the Time-Dependent Wave Equation , 2002 .
[19] David Gottlieb,et al. The Chebyshev-Legendre method: implementing Legendre methods on Chebyshev points , 1994 .
[20] Jie Shen,et al. E-cient Chebyshev-Legendre Galerkin Methods for Elliptic Problems , 1996 .
[21] M Salahuddin,et al. Ion temperature effect on the propagation of ion acoustic solitary waves in a relativistic magnetoplasma , 1990 .