Nanopore Technology for Biomedical Applications

The ability to create well-defined and controlled interfaces has been an area of great interest over the last few years, particularly in the biomedical arena. This paper will describe the development of technology for the fabrication of nanopore membranes, and their operation in biological environments. With monodisperse pores sizes as small as 10 nanometers, these membranes offer advantages in their reproducibility, and their ability to be integrated with controlled biochemical surface modification protocols. A comprehensive review of results in the areas of nanopore and biocapsule microfabrication technologies, biocompatibility of nanomembrane materials, biologically appropriate post-processing protocols (bonding, sterilization), surface modification protocols, and appropriate mass transport models will be presented. The results point to the potential of using such technologies for therapeutic applications including immunoisolation biocapsules, drug delivery devices, and targeted biorecognition platforms.

[1]  Thin films and surfaces , 1950 .

[2]  Jeff Kupperman,et al.  Annual Conference , 2006, Sport & Exercise Psychology Review.

[3]  D. Seligson,et al.  Clinical Chemistry , 1965, Bulletin de la Societe de chimie biologique.

[4]  Ted M. Lakowski,et al.  Analytical Biochemistry , 1960, Nature.

[5]  S. Lowen The Biophysical Journal , 1960, Nature.

[6]  T. S. West Analytical Chemistry , 1969, Nature.

[7]  J. C. Bevington,et al.  Chemical Reviews , 1970, Nature.

[8]  R. G. Craig Restorative dental materials , 1971 .

[9]  Fred E. Regnier,et al.  Use of oxiranes in the preparation of bonded phase supports , 1976 .

[10]  A. Matas,et al.  Pancreatic islet cell transplantation. , 1978, The Surgical clinics of North America.

[11]  F. Lim,et al.  Microencapsulated islets as bioartificial endocrine pancreas. , 1980, Science.

[12]  M. Goosen,et al.  Prolonged survival of transplanted islets of Langerhans encapsulated in a biocompatible membrane. , 1984, Biochimica et biophysica acta.

[13]  G. Olofsson,et al.  Chemical vapour deposition of silanes , 1985 .

[14]  M. Goosen,et al.  Optimization of microencapsulation parameters: Semipermeable microcapsules as a bioartificial pancreas , 1985, Biotechnology and bioengineering.

[15]  G. V. Kondraske,et al.  Proceedings of the 8th annual conference of the IEEE Engineering in Medicine and Biology Society , 1986 .

[16]  E. Hall,et al.  The nature of biotechnology. , 1988, Journal of biomedical engineering.

[17]  M. Lederer Journal of Chromatography , 1988 .

[18]  J M Calvert,et al.  Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. , 1989, Analytical biochemistry.

[19]  R. Schnabel,et al.  Controlled-pore glass as a stationary phase in chromatography , 1991 .

[20]  A "jumping gene" caught in the act. , 1991, Science.

[21]  B. Lassen,et al.  Some model surfaces made by RF plasma aimed for the study of biocompatibility , 1992 .

[22]  Robert Lanza,et al.  Islet Transplantation With Immunoisolation , 1992, Diabetes.

[23]  D. Briggs,et al.  High resolution XPS of organic polymers , 1992 .

[24]  J. W. Parce,et al.  The cytosensor microphysiometer: biological applications of silicon technology. , 1992, Science.

[25]  F. Ligler,et al.  Fabrication of surfaces resistant to protein adsorption and application to two-dimensional protein patterning. , 1993, Analytical biochemistry.

[26]  John F. Watts,et al.  Encyclopedia of materials characterization: C. Richard Brundle, Charles A. Evans Jr and Shaun Wilson (Eds) Butterworth-Heinemann, Stoneham, USA, 1992, ISBN 0-7506-9168-9, 750pp. £75 , 1993 .

[27]  Barbara Lom,et al.  A versatile technique for patterning biomolecules onto glass coverslips , 1993, Journal of Neuroscience Methods.

[28]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[29]  F. Rondelez,et al.  Silanization of Solid Substrates: A Step Toward Reproducibility , 1994 .

[30]  Y. Ikada,et al.  Protein permeation through poly(vinyl alcohol) hydrogel membranes. , 1994, Biomaterials.

[31]  J. W. Parce,et al.  Microfabrication in silicon microphysiometry. , 1994, Clinical chemistry.

[32]  K. Najafi,et al.  A micromachined silicon sieve electrode for nerve regeneration applications , 1994, IEEE Transactions on Biomedical Engineering.

[33]  Scientific American SCIENCE & MEDICINE , 1995 .

[34]  R. Tilton,et al.  Effect of concentration quenching on fluorescence recovery after photobleaching measurements. , 1995, Biophysical journal.

[35]  Andreas Manz,et al.  Manipulation of Sample Fractions on a Capillary Electrophoresis Chip , 1995 .

[36]  Immobilization of thiabendazole-specific monoclonal antibodies to silicon substrates via aqueous silanization , 1995 .

[37]  D. Murphy,et al.  Selective adhesion of functional microtubules to patterned silane surfaces. , 1995, Biophysical journal.

[38]  A. Ulman,et al.  Formation and Structure of Self-Assembled Monolayers. , 1996, Chemical reviews.

[39]  G. Gauglitz,et al.  Surface modification for direct immunoprobes. , 1996, Biosensors & bioelectronics.

[40]  M. Grunze,et al.  Multifrequency evaluation of different immunosorbents on acoustic plate mode sensors. , 1996, Analytical chemistry.

[41]  Elso Kuljanić,et al.  Advanced Manufacturing Systems and Technology , 1996 .

[42]  G Scott,et al.  Dimerization of tear lysozyme on hydrophilic contact lens polymers. , 1996, Current eye research.

[43]  E. Doherty,et al.  Transport characterization of membranes for immunoisolation. , 1996, Biomaterials.

[44]  Surfaces for Bioactivity,et al.  Thin films and surfaces for bioactivity and biomedical applications : symposium held November 28-29, 1995, Boston, Massachussetts, U.S.A. , 1996 .

[45]  H. Ringsdorf,et al.  Surface Modification via Reactive Polymer Interlayers , 1996 .

[46]  S. P. Fodor DNA SEQUENCING: Massively Parallel Genomics , 1997, Science.

[47]  A. Anilkumar,et al.  An encapsulation system for the immunoisolation of pancreatic islets , 1997, Nature Biotechnology.

[48]  M. Ferrari,et al.  Reduction of albumin adsorption onto silicon surfaces by Tween 20. , 1997, Biotechnology and bioengineering.

[49]  Study of the fluid flow in microfabricated microchannels , 1998 .

[50]  M. Ferrari,et al.  Proteins and cells on PEG immobilized silicon surfaces. , 1998, Biomaterials.

[51]  Paul L. Gourley,et al.  Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications , 1998 .

[52]  M Ferrari,et al.  Microfabricated immunoisolating biocapsules. , 1998, Biotechnology and bioengineering.

[53]  M Ferrari,et al.  Detection of functional groups and antibodies on microfabricated surfaces by confocal microscopy. , 1998, Biotechnology and bioengineering.

[54]  M. Cima,et al.  A controlled-release microchip , 1999, Nature.

[55]  Anatoly V. Zherdev,et al.  Applied Biochemistry and Biotechnology , 1999 .

[56]  Journal of Chemical Physics , 1932, Nature.