Enhancement of phase transition temperature through hydrogen bond modification in molecular ferroelectrics

[1]  Yu-Meng You,et al.  The First Demonstration of Strain‐Controlled Periodic Ferroelectric Domains with Superior Piezoelectric Response in Molecular Materials , 2023, Advanced materials.

[2]  Qiongfeng Shi,et al.  Water-Modulated Biomimetic Hyper-Attribute-Gel Electronic Skin for Robotics and Skin-Attachable Wearables. , 2023, ACS nano.

[3]  Yu-Meng You,et al.  Inch-Size Molecular Ferroelectric Crystal with a Large Electromechanical Coupling Factor on Par with Barium Titanate. , 2022, Journal of the American Chemical Society.

[4]  Yu-Meng You,et al.  Rational Design of Molecular Ferroelectrics with Negatively Charged Domain Walls. , 2022, Journal of the American Chemical Society.

[5]  Haixia Zhao,et al.  Achievement of a giant piezoelectric coefficient and piezoelectric voltage coefficient through plastic molecular-based ferroelectric materials , 2022, Matter.

[6]  Geoffrey A. Slipher,et al.  Towards enduring autonomous robots via embodied energy , 2022, Nature.

[7]  C. Eom,et al.  100 years of ferroelectricity—A celebration , 2021, APL Materials.

[8]  Yu-Meng You,et al.  Hybrid organic–inorganic perovskite ferroelectrics bring light to semiconducting applications: Bandgap engineering as a starting point , 2021 .

[9]  R. Xiong,et al.  Record Enhancement of Curie Temperature in Host-Guest Inclusion Ferroelectrics. , 2021, Journal of the American Chemical Society.

[10]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerator Based on In Situ Growth All‐Inorganic CsPbBr3 Perovskite Nanocrystals in PVDF Fibers with Long‐Term Stability , 2021, Advanced Functional Materials.

[11]  R. Xiong,et al.  Large Electrostrictive Coefficient in a Two-Dimensional Hybrid Perovskite Ferroelectric. , 2021, Journal of the American Chemical Society.

[12]  Takayoshi Nakamura,et al.  Organic Ferroelectric Vortex-Antivortex Domain Structure. , 2020, Journal of the American Chemical Society.

[13]  R. Xiong,et al.  Molecular Design Principles for Ferroelectrics: Ferroelectrochemistry. , 2020, Journal of the American Chemical Society.

[14]  Yuan‐Yuan Tang,et al.  Six-Fold Vertices in a Single-Component Organic Ferroelectric with Most Equivalent Polarization Directions. , 2020, Journal of the American Chemical Society.

[15]  Yu-Meng You,et al.  Observation of vortex domains in a two-dimensional lead iodide perovskite ferroelectric. , 2020, Journal of the American Chemical Society.

[16]  Thomas R. Shrout,et al.  Transparent ferroelectric crystals with ultrahigh piezoelectricity , 2020, Nature.

[17]  Yu-Meng You,et al.  A Nickel(II) Nitrite Based Molecular Perovskite Ferroelectric. , 2019, Angewandte Chemie.

[18]  Peng-Fei Li,et al.  A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate , 2019, Science.

[19]  R. Xiong,et al.  Organic enantiomeric high-Tc ferroelectrics , 2019, Proceedings of the National Academy of Sciences.

[20]  Yang Liu,et al.  Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary , 2018, Nature.

[21]  Zhuo Xu,et al.  Ultrahigh piezoelectricity in ferroelectric ceramics by design , 2018, Nature Materials.

[22]  Jinlan Wang,et al.  An organic-inorganic perovskite ferroelectric with large piezoelectric response , 2017, Science.

[23]  Xiao Wei Sun,et al.  High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride) , 2017 .

[24]  P. Chand,et al.  Ferroelectrics: Principles and Applications , 2017 .

[25]  Yu-Meng You,et al.  Anomalously rotary polarization discovered in homochiral organic ferroelectrics , 2016, Nature Communications.

[26]  Yu-Meng You,et al.  Bandgap Engineering of Lead‐Halide Perovskite‐Type Ferroelectrics , 2016, Advanced materials.

[27]  M. J. Turner,et al.  Accurate and Efficient Model Energies for Exploring Intermolecular Interactions in Molecular Crystals. , 2014, The journal of physical chemistry letters.

[28]  G. Giovannetti,et al.  Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal , 2013, Science.

[29]  Liming Dai,et al.  Characteristics of output voltage and current of integrated nanogenerators , 2009 .

[30]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[31]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[32]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[33]  A. J. Lovinger Ferroelectric Polymers , 1983, Science.

[34]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .