Local Analysis of dissipative Dynamical Systems

Linear transformation techniques such as singular value decomposition (SVD) have been used widely to gain insight into the qualitative dynamics of data generated by dynamical systems. There have been several reports in the past that had pointed out the susceptibility of linear transformation approaches in the presence of nonlinear correlations. In this tutorial review, the local dispersion along with the surrogate testing is suggested to discriminate nonlinear correlations arising in deterministic and non-deterministic settings.

[1]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[2]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[3]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[4]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[5]  Kugiumtzis Surrogate data test for nonlinearity including nonmonotonic transforms , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Mees,et al.  Singular-value decomposition and embedding dimension. , 1987, Physical review. A, General physics.

[7]  T. Schreiber,et al.  Discrimination power of measures for nonlinearity in a time series , 1997, chao-dyn/9909043.

[8]  P. P. Kanjilal,et al.  On the detection of determinism in a time series , 1999 .

[9]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[10]  Thomas Schreiber,et al.  Surrogate data for non-stationary signals , 1999, chao-dyn/9904023.

[11]  Hediger,et al.  Fractal dimension and local intrinsic dimension. , 1989, Physical review. A, General physics.

[12]  J. A. López del Val,et al.  Principal Components Analysis , 2018, Applied Univariate, Bivariate, and Multivariate Statistics Using Python.

[13]  S M Pincus,et al.  Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Schreiber,et al.  Improved Surrogate Data for Nonlinearity Tests. , 1996, Physical review letters.

[15]  Tanya Schmah,et al.  Surrogate Data Pathologies and the False-positive rejection of the Null Hypothesis , 2001, Int. J. Bifurc. Chaos.

[16]  David E. Booth,et al.  Applied Multivariate Analysis , 2003, Technometrics.

[17]  H. Saunders,et al.  Probability, Random Variables and Stochastic Processes (2nd Edition) , 1989 .

[18]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[19]  Hübner,et al.  Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared NH3 laser. , 1989, Physical review. A, General physics.

[20]  F. Takens Detecting strange attractors in turbulence , 1981 .

[21]  P. Rapp,et al.  Comparative study of embedding methods. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[23]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[24]  William H. Press,et al.  Numerical recipes in C , 2002 .

[25]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[26]  A. Hope A Simplified Monte Carlo Significance Test Procedure , 1968 .

[27]  Leonard A. Smith,et al.  Distinguishing between low-dimensional dynamics and randomness in measured time series , 1992 .

[28]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[29]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[30]  Pál Turán,et al.  Über den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und Über den Picard—Landauschen Satz , 1970 .

[31]  J. Overall,et al.  Applied multivariate analysis , 1983 .

[32]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[33]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[34]  Nikos D. Sidiropoulos,et al.  Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.

[35]  R. Mañé,et al.  On the dimension of the compact invariant sets of certain non-linear maps , 1981 .

[36]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[37]  P. Grassberger,et al.  NONLINEAR TIME SEQUENCE ANALYSIS , 1991 .

[38]  Alfonso M Albano,et al.  Phase-randomized surrogates can produce spurious identifications of non-random structure , 1994 .

[39]  Anupam Sahay,et al.  The search for a low-dimensional characterization of a local climate system , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  Jens Timmer,et al.  Power of surrogate data testing with respect to nonstationarity , 1998, chao-dyn/9807039.

[41]  T R Bashore,et al.  The algorithmic complexity of multichannel EEGs is sensitive to changes in behavior. , 2003, Psychophysiology.

[42]  J. Theiler,et al.  Don't bleach chaotic data. , 1993, Chaos.

[43]  C. Carathéodory,et al.  Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .

[44]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[45]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[46]  Keinosuke Fukunaga,et al.  An Algorithm for Finding Intrinsic Dimensionality of Data , 1971, IEEE Transactions on Computers.

[47]  Marina Meila,et al.  An Experimental Comparison of Several Clustering and Initialization Methods , 1998, UAI.

[48]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[49]  N. Gershenfeld,et al.  Cluster-weighted modelling for time-series analysis , 1999, Nature.

[50]  D. Broomhead,et al.  Takens embedding theorems for forced and stochastic systems , 1997 .

[51]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[52]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[53]  James Theiler,et al.  On the evidence for how-dimensional chaos in an epileptic electroencephalogram , 1995 .

[54]  Lyle Noakes,et al.  THE TAKENS EMBEDDING THEOREM , 1991 .

[55]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[56]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[57]  Paul S. Bradley,et al.  Initialization of Iterative Refinement Clustering Algorithms , 1998, KDD.

[58]  Schwartz,et al.  Singular-value decomposition and the Grassberger-Procaccia algorithm. , 1988, Physical review. A, General physics.

[59]  Gerd Pfister,et al.  Comparison of algorithms calculating optimal embedding parameters for delay time coordinates , 1992 .

[60]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[61]  James Theiler,et al.  Detecting Nonlinearity in Data with Long Coherence Times , 1993, comp-gas/9302003.

[62]  G. Dunteman Principal Components Analysis , 1989 .

[63]  D. T. Kaplan,et al.  Is fibrillation chaos? , 1990, Circulation research.

[64]  Gene H. Golub,et al.  Matrix Computations, Third Edition , 1996 .

[65]  James Theiler,et al.  Constrained-realization Monte-carlo Method for Hypothesis Testing , 1996 .

[66]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[67]  Ivan Dvořák,et al.  Singular-value decomposition in attractor reconstruction: pitfalls and precautions , 1992 .

[68]  H. Schuster,et al.  Proper choice of the time delay for the analysis of chaotic time series , 1989 .

[69]  Radhakrishnan Nagarajan,et al.  Surrogate Testing by Estimating the Local Dispersions in Phase Space , 2003, Int. J. Bifurc. Chaos.

[70]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[71]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[72]  Salvatore D. Morgera,et al.  Information theoretic covariance complexity and its relation to pattern recognition , 1985, IEEE Transactions on Systems, Man, and Cybernetics.