Local Analysis of dissipative Dynamical Systems
暂无分享,去创建一个
[1] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[2] B. Efron,et al. The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .
[3] G. P. King,et al. Extracting qualitative dynamics from experimental data , 1986 .
[4] Robert M. Gray,et al. An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..
[5] Kugiumtzis. Surrogate data test for nonlinearity including nonmonotonic transforms , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[6] Mees,et al. Singular-value decomposition and embedding dimension. , 1987, Physical review. A, General physics.
[7] T. Schreiber,et al. Discrimination power of measures for nonlinearity in a time series , 1997, chao-dyn/9909043.
[8] P. P. Kanjilal,et al. On the detection of determinism in a time series , 1999 .
[9] L. Tsimring,et al. The analysis of observed chaotic data in physical systems , 1993 .
[10] Thomas Schreiber,et al. Surrogate data for non-stationary signals , 1999, chao-dyn/9904023.
[11] Hediger,et al. Fractal dimension and local intrinsic dimension. , 1989, Physical review. A, General physics.
[12] J. A. López del Val,et al. Principal Components Analysis , 2018, Applied Univariate, Bivariate, and Multivariate Statistics Using Python.
[13] S M Pincus,et al. Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.
[14] Schreiber,et al. Improved Surrogate Data for Nonlinearity Tests. , 1996, Physical review letters.
[15] Tanya Schmah,et al. Surrogate Data Pathologies and the False-positive rejection of the Null Hypothesis , 2001, Int. J. Bifurc. Chaos.
[16] David E. Booth,et al. Applied Multivariate Analysis , 2003, Technometrics.
[17] H. Saunders,et al. Probability, Random Variables and Stochastic Processes (2nd Edition) , 1989 .
[18] John G. Proakis,et al. Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .
[19] Hübner,et al. Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared NH3 laser. , 1989, Physical review. A, General physics.
[20] F. Takens. Detecting strange attractors in turbulence , 1981 .
[21] P. Rapp,et al. Comparative study of embedding methods. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[22] V. Pisarenko. The Retrieval of Harmonics from a Covariance Function , 1973 .
[23] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[24] William H. Press,et al. Numerical recipes in C , 2002 .
[25] J. Yorke,et al. Chaos: An Introduction to Dynamical Systems , 1997 .
[26] A. Hope. A Simplified Monte Carlo Significance Test Procedure , 1968 .
[27] Leonard A. Smith,et al. Distinguishing between low-dimensional dynamics and randomness in measured time series , 1992 .
[28] H. Abarbanel,et al. Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[29] James Theiler,et al. Testing for nonlinearity in time series: the method of surrogate data , 1992 .
[30] Pál Turán,et al. Über den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und Über den Picard—Landauschen Satz , 1970 .
[31] J. Overall,et al. Applied multivariate analysis , 1983 .
[32] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[33] I. Miller. Probability, Random Variables, and Stochastic Processes , 1966 .
[34] Nikos D. Sidiropoulos,et al. Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.
[35] R. Mañé,et al. On the dimension of the compact invariant sets of certain non-linear maps , 1981 .
[36] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[37] P. Grassberger,et al. NONLINEAR TIME SEQUENCE ANALYSIS , 1991 .
[38] Alfonso M Albano,et al. Phase-randomized surrogates can produce spurious identifications of non-random structure , 1994 .
[39] Anupam Sahay,et al. The search for a low-dimensional characterization of a local climate system , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[40] Jens Timmer,et al. Power of surrogate data testing with respect to nonstationarity , 1998, chao-dyn/9807039.
[41] T R Bashore,et al. The algorithmic complexity of multichannel EEGs is sensitive to changes in behavior. , 2003, Psychophysiology.
[42] J. Theiler,et al. Don't bleach chaotic data. , 1993, Chaos.
[43] C. Carathéodory,et al. Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .
[44] Holger Kantz,et al. Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.
[45] B. Efron. The jackknife, the bootstrap, and other resampling plans , 1987 .
[46] Keinosuke Fukunaga,et al. An Algorithm for Finding Intrinsic Dimensionality of Data , 1971, IEEE Transactions on Computers.
[47] Marina Meila,et al. An Experimental Comparison of Several Clustering and Initialization Methods , 1998, UAI.
[48] S. T. Buckland,et al. An Introduction to the Bootstrap. , 1994 .
[49] N. Gershenfeld,et al. Cluster-weighted modelling for time-series analysis , 1999, Nature.
[50] D. Broomhead,et al. Takens embedding theorems for forced and stochastic systems , 1997 .
[51] M. Feigenbaum. The universal metric properties of nonlinear transformations , 1979 .
[52] Max L. Warshauer,et al. Lecture Notes in Mathematics , 2001 .
[53] James Theiler,et al. On the evidence for how-dimensional chaos in an epileptic electroencephalogram , 1995 .
[54] Lyle Noakes,et al. THE TAKENS EMBEDDING THEOREM , 1991 .
[55] H. Tong. Non-linear time series. A dynamical system approach , 1990 .
[56] Julius T. Tou,et al. Pattern Recognition Principles , 1974 .
[57] Paul S. Bradley,et al. Initialization of Iterative Refinement Clustering Algorithms , 1998, KDD.
[58] Schwartz,et al. Singular-value decomposition and the Grassberger-Procaccia algorithm. , 1988, Physical review. A, General physics.
[59] Gerd Pfister,et al. Comparison of algorithms calculating optimal embedding parameters for delay time coordinates , 1992 .
[60] Fraser,et al. Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.
[61] James Theiler,et al. Detecting Nonlinearity in Data with Long Coherence Times , 1993, comp-gas/9302003.
[62] G. Dunteman. Principal Components Analysis , 1989 .
[63] D. T. Kaplan,et al. Is fibrillation chaos? , 1990, Circulation research.
[64] Gene H. Golub,et al. Matrix Computations, Third Edition , 1996 .
[65] James Theiler,et al. Constrained-realization Monte-carlo Method for Hypothesis Testing , 1996 .
[66] M. Hénon,et al. A two-dimensional mapping with a strange attractor , 1976 .
[67] Ivan Dvořák,et al. Singular-value decomposition in attractor reconstruction: pitfalls and precautions , 1992 .
[68] H. Schuster,et al. Proper choice of the time delay for the analysis of chaotic time series , 1989 .
[69] Radhakrishnan Nagarajan,et al. Surrogate Testing by Estimating the Local Dispersions in Phase Space , 2003, Int. J. Bifurc. Chaos.
[70] J. A. Stewart,et al. Nonlinear Time Series Analysis , 2015 .
[71] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[72] Salvatore D. Morgera,et al. Information theoretic covariance complexity and its relation to pattern recognition , 1985, IEEE Transactions on Systems, Man, and Cybernetics.