Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation

Abstract Hypotheses ranging from fluvial processes and debris flows to CO 2 frost-lubricated or entirely dry flows have been proposed for the formation of martian gullies. In order to constrain these potential formation mechanisms, we mapped the global distribution of gullies on Mars using >54,000 images from the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) covering ∼85% of the martian surface at a resolution of ∼6 m/pixel. The results of this mapping effort confirm the results of studies using lower resolution and/or less areally extensive datasets that gullies are confined to the martian mid- to high-latitudes (∼30–80° in both hemispheres). We also find a clear transition in gully orientation with increasing latitude, going from poleward-facing to equator-facing preference. In general, gullies are more developed on poleward-facing walls, and mid-latitude gullies are more developed than those at higher latitudes. Gullies are also found to be strongly correlated with regions of distinct thermophysical properties of sand- to pebble-sized grains, low albedo, and higher thermal inertia. These observations all point to climate, insolation, and thermal properties of the substrate playing key factors in gully formation on Mars, supporting either a melting ground ice or snowpack hypothesis as the source for water involved in gully formation.

[1]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[2]  Brian M. Hynek,et al.  A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters , 2012 .

[3]  C. Hugenholtz Frosted granular flow: A new hypothesis for mass wasting in martian gullies , 2008 .

[4]  O. Walton,et al.  Effects of gravity on cohesive behavior of fine powders: implications for processing Lunar regolith , 2007 .

[5]  Richard J. Pike,et al.  Control of crater morphology by gravity and target type - Mars, earth, moon , 1980 .

[6]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[7]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[8]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[9]  Franklin P. Mills,et al.  An Alternative Approach to Mapping Thermophysical Units from Martian Thermal Inertia and Albedo Data Using a Combination of Unsupervised Classification Techniques , 2014, Remote. Sens..

[10]  Seasonal melting of surface water ice condensing in martian gullies , 2004 .

[11]  M. Mellon,et al.  The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[12]  M. Vincendon,et al.  Present-day seasonal gully activity in a south polar pit (Sisyphi Cavi) on Mars , 2015 .

[13]  B. Hétu,et al.  Les coulées de pierres glacées : un nouveau type de coulées de pierraille sur les talus d’éboulis , 2007 .

[14]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[15]  R. Wiens,et al.  Evidence for debris flow gully formation initiated by shallow subsurface water on Mars , 2010 .

[16]  M. Malin,et al.  Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season , 2002 .

[17]  P. Christensen Formation of recent martian gullies through melting of extensive water-rich snow deposits , 2003, Nature.

[18]  K. Edgett,et al.  Seasonal surface frost at low latitudes on Mars , 2005 .

[19]  A. McEwen,et al.  Seasonality of present-day Martian dune-gully activity , 2010 .

[20]  A. McEwen,et al.  New and recent gully activity on Mars as seen by HiRISE , 2010 .

[21]  H. Hiesinger,et al.  Gullies and their relationships to the dust–ice mantle in the northwestern Argyre Basin, Mars , 2012 .

[22]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[23]  James W. Head,et al.  Martian gullies in the southern mid-latitudes of Mars: Evidence for climate-controlled formation of young fluvial features based upon local and global topography , 2007 .

[24]  Mark I. Richardson,et al.  On the orbital forcing of Martian water and CO2 cycles: A general circulation model study with simplified volatile schemes , 2003 .

[25]  S. Dickenshied,et al.  JMARS - A Planetary GIS , 2009 .

[26]  B. Clark,et al.  The salts of Mars , 1981 .

[27]  Nicolas Thomas,et al.  Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters , 2009, Science.

[28]  J. Holt,et al.  Thick, Excess Water Ice in Arcadia Planitia , 2014 .

[29]  K. Rowntree Morphological characteristics of gully networks and their relationship to host materials, Baringo District, Kenya , 1991 .

[30]  M. Mellon,et al.  Apparent thermal inertia and the surface heterogeneity of Mars , 2007 .

[31]  Christopher P. McKay,et al.  Formation of Martian Gullies by the Action of Liquid Water Flowing Under Current Martian Environmental Conditions , 2005 .

[32]  N. Lanza,et al.  Depths, Orientation and Slopes of Martian Hillside Gullies in the Northern Hemisphere , 2006 .

[33]  David L. Bish,et al.  Magnesium sulphate salts and the history of water on Mars , 2004, Nature.

[34]  Identifying the Potential Biosphere of Mars , 2008, 0812.0190.

[35]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[36]  Brian M. Hynek,et al.  A new global database of Mars impact craters ≥1 km: 2. Global crater properties and regional variations of the simple‐to‐complex transition diameter , 2012 .

[37]  A. Treiman Geologic settings of Martian gullies: Implications for their origins , 2003 .

[38]  J. Head,et al.  Decameter-scale pedestal craters in the tropics of Mars: Evidence for the recent presence of very young regional ice deposits in Tharsis , 2012 .

[39]  M. Gilmore,et al.  Role of aquicludes in formation of Martian gullies , 2002 .

[40]  H. Hiesinger,et al.  Evidence for present day gully activity on the Russell crater dune field, Mars , 2010 .

[41]  Alfred S. McEwen,et al.  Seasonal activity and morphological changes in martian gullies , 2012 .

[42]  Bruce M. Jakosky,et al.  The distribution and behavior of Martian ground ice during past and present epochs , 1995 .

[43]  M. Mellon,et al.  Recent gullies on Mars and the source of liquid water , 2001 .

[44]  J. Head,et al.  Gully formation on Mars: Two recent phases of formation suggested by links between morphology, slope orientation and insolation history , 2010 .

[45]  J. Head,et al.  The formation and evolution of youthful gullies on Mars: Gullies as the late-stage phase of Mars’ most recent ice age , 2009 .

[46]  John F. Mustard,et al.  Recent ice ages on Mars , 2003, Nature.

[47]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[48]  A. Decaulne,et al.  Spatial and temporal diversity for debris‐flow meteorological control in subarctic oceanic periglacial environments in Iceland , 2007 .

[49]  J. Mustard,et al.  Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice , 2001, Nature.

[50]  J. Head,et al.  The role of thermal contraction crack polygons in cold-desert fluvial systems , 2008, Antarctic Science.

[51]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[52]  Kenneth S Edgett,et al.  Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars , 2006, Science.

[53]  M. Mellon,et al.  Geographic variations in the thermal and diffusive stability of ground ice on Mars , 1993 .

[54]  Jean-Baptiste Madeleine,et al.  Amazonian northern mid-latitude glaciation on Mars: A proposed climate scenario , 2009 .

[55]  Shaopeng Huang,et al.  CLIMATE RECONSTRUCTION FROM SUBSURFACE TEMPERATURES , 2000 .

[56]  M. Mellon,et al.  A Global Map of Thermal Inertia from Mars Global Surveyor Mapping-Mission Data , 2002 .

[57]  J. N. Hutchinson,et al.  A review of the classification of landslides of the flow type , 2001 .

[58]  M. Kirkby,et al.  Gully processes and modelling , 1997 .

[59]  Richard M. Lueptow,et al.  Behavior of flowing granular materials under variable g. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  N. Bridges,et al.  Northern hemisphere Martian gullies and mantled terrain: Implications for near‐surface water migration in Mars' recent past , 2006 .

[61]  A. Treiman,et al.  CO2 gas fluidization in the initiation and formation of Martian polar gullies , 2011 .

[62]  M. Malin,et al.  Present-Day Gully Activity Observed by the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) , 2009 .

[63]  J. T. Gray,et al.  Effects of environmental change on scree slope development throughout the postglacial period in the Chic-Choc Mountains in the northern Gaspé Peninsula, Québec , 2000 .

[64]  Patrick Pinet,et al.  Orientation and distribution of recent gullies in the southern hemisphere of Mars: Observations from High Resolution Stereo Camera/Mars Express (HRSC/MEX) and Mars Orbiter Camera/Mars Global Surveyor (MOC/MGS) data Camera/Mars Express (HRSC/MEX) and Mars Orbiter Camera/Mars Global Surveyor (MOC/MGS) , 2006 .

[65]  Michael H. Hecht,et al.  Metastability of liquid water on Mars , 2001 .

[66]  M. Carr Stability of streams and lakes on Mars , 1983 .

[67]  J. Laskar,et al.  Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity , 2004, Nature.

[68]  Paul S. Smith,et al.  Mars Exploration Program 2007 Phoenix landing site selection and characteristics , 2008 .

[69]  David E. Shean,et al.  Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit , 2005 .

[70]  R. Phillips,et al.  Examination of gully sites on Mars with the shallow radar , 2010 .

[71]  Troy Shinbrot,et al.  Dry granular flows can generate surface features resembling those seen in Martian gullies. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[72]  M. Mellon,et al.  Stability of mid-latitude snowpacks on Mars , 2006 .

[73]  J. Delour,et al.  Fingering in granular flows , 1997, Nature.

[74]  Rudolf Rieder,et al.  Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .

[75]  N. Cabrol,et al.  On the possibility of liquid water on present‐day Mars , 2001 .

[76]  Roberto Orosei,et al.  Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars , 2009 .

[77]  Bruce A. Cantor,et al.  An overview of the 1985-2006 Mars Orbiter Camera science investigation , 2010 .

[78]  R. Overfelt,et al.  The flowability of fine powders in reduced gravity conditions , 2008 .

[79]  James W. Head,et al.  Kilometer‐scale roughness of Mars: Results from MOLA data analysis , 2000 .

[80]  F. Forget,et al.  Formation of Recent Martian Debris Flows by Melting of Near-Surface Ground Ice at High Obliquity , 2001, Science.

[81]  S. Squyres The distribution of lobate debris aprons and similar flows on Mars , 1979 .

[82]  Alfred S. McEwen,et al.  Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water , 2008 .

[83]  S. V. Gasselt,et al.  Distribution and orientation of northern-hemisphere gullies on Mars from the evaluation of HRSC and MOC-NA data , 2010 .

[84]  B. White,et al.  Dynamic shear of granular material under variable gravity conditions , 1988 .

[85]  D. Ming,et al.  Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site , 2009, Science.

[86]  J. Pelletier,et al.  Recent bright gully deposits on Mars: Wet or dry flow? , 2007 .

[87]  D. Bass,et al.  Water-ice clouds and dust in the north polar region of Mars using MGS TES data , 2008 .

[88]  W. L. Davis,et al.  Duration of liquid water habitats on early Mars. , 1991, Icarus.

[89]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[90]  C. McKay,et al.  Formation and evolution of buried snowpack deposits in Pearse Valley, Antarctica, and implications for Mars , 2012, Antarctic Science.

[91]  James W. Head,et al.  Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars , 2007 .

[92]  E. Gaidos Cryovolcanism and the Recent Flow of Liquid Water on Mars , 2001 .

[93]  Jennifer Lynne Heldmann,et al.  Observations of martian gullies and constraints on potential formation mechanisms , 2004 .

[94]  M. Mellon,et al.  Observations of martian gullies and constraints on potential formation mechanisms. II. The northern hemisphere , 2007 .

[95]  Nick Hoffman,et al.  Active polar gullies on Mars and the role of carbon dioxide. , 2002, Astrobiology.

[96]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[97]  Jonathan I. Lunine,et al.  Liquid CO2 breakout and the formation of recent small gullies on Mars , 2001 .

[98]  Alfred S. McEwen,et al.  A new dry hypothesis for the formation of martian linear gullies , 2013 .

[99]  T. Ishii FORMATION OF RECENT MARTIAN GULLIES BY AVALANCHES OF CO2 FROST , 2004 .