Improved Current Collapse in Recessed AlGaN/GaN MOS-HEMTs by Interface and Structure Engineering

Enhancement-mode (E-mode) GaN MOS-HEMTs using recess process typically face the challenge of precise thickness control, surface roughness issue, and interface traps, all of which could lead to the degradation of the device performance and cause reliability issues. In this article, we use a combined process of atomic layer etching (ALE) technique and atomic layer deposited (ALD) HfSiO dielectric. ALE is repeated oxidation and dry etching process with minimal surface damage, leading to a precisely controlled low-damage recess channel area. The fabricated AlGaN/GaN MOS-HEMTs exhibit E-mode operation with a positive threshold voltage (<inline-formula> <tex-math notation="LaTeX">${V}_{\text {th}}$ </tex-math></inline-formula>) of +2.1 V with small <inline-formula> <tex-math notation="LaTeX">${V}_{\text {th}}$ </tex-math></inline-formula> dispersion for different devices, an ultrahigh drain current ON– OFF ratio over 10<sup>10</sup> and a low ON-resistance (<inline-formula> <tex-math notation="LaTeX">${R}_{ \mathrm{\scriptscriptstyle ON}}$ </tex-math></inline-formula>) of <inline-formula> <tex-math notation="LaTeX">$11.5~\Omega \cdot \text {mm}$ </tex-math></inline-formula> at gate-to-drain length (<inline-formula> <tex-math notation="LaTeX">${L}_{\text {GD}}$ </tex-math></inline-formula>) of <inline-formula> <tex-math notation="LaTeX">$25~\mu \text{m}$ </tex-math></inline-formula>. Source field plate (SFP) structure is employed to reduce the charge trapping process and improve the reliability at high voltages. The current collapse of the E-mode device with SFP structure can be effectively suppressed due to the optimized redistribution of the peak electric field in the gate-to-drain access region, where a significantly improved dynamic <inline-formula> <tex-math notation="LaTeX">${R}_{ \mathrm{\scriptscriptstyle ON}}$ </tex-math></inline-formula> of only 1.17 times increase from the static <inline-formula> <tex-math notation="LaTeX">${R}_{ \mathrm{\scriptscriptstyle ON}}$ </tex-math></inline-formula> after OFF-state <inline-formula> <tex-math notation="LaTeX">${V}_{\text {DS}}$ </tex-math></inline-formula> stress of 600 V. Moreover, the enhanced vertical electric field with decreased AlGaN barrier thickness and the positive shift in threshold voltage for the E-mode device can effectively suppress the current collapse, which outperforms the depletion-mode counterpart. The breakdown voltage reaches a considerable value of 1560 V at an OFF-state current density of <inline-formula> <tex-math notation="LaTeX">${1}~\mu \text{A}$ </tex-math></inline-formula>/mm.

[1]  黄森 High-Performance Enhancement-Mode Al?O?/AlGaN/GaN-on-Si MISFETs With 626 MW/cm2 Figure of Merit , 2015 .

[2]  Baoshun Zhang,et al.  Breakdown Enhancement and Current Collapse Suppression by High-Resistivity GaN Cap Layer in Normally-Off AlGaN/GaN HEMTs , 2017, IEEE Electron Device Letters.

[3]  Shu Yang,et al.  600-V Normally Off ${\rm SiN}_{x}$ /AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse , 2013, IEEE Electron Device Letters.

[4]  W. Saito,et al.  Suppression of Dynamic On-Resistance Increase and Gate Charge Measurements in High-Voltage GaN-HEMTs With Optimized Field-Plate Structure , 2007, IEEE Transactions on Electron Devices.

[5]  Kevin J. Chen,et al.  High Uniformity Normally-OFF GaN MIS-HEMTs Fabricated on Ultra-Thin-Barrier AlGaN/GaN Heterostructure , 2016, IEEE Electron Device Letters.

[6]  Y. Hao,et al.  High-temperature low-damage gate recess technique and ozone-assisted ALD-grown Al2O3 gate dielectric for high-performance normally-off GaN MIS-HEMTs , 2014, 2014 IEEE International Electron Devices Meeting.

[7]  Edward Yi Chang,et al.  High-Performance LPCVD-SiNx / InAlGaN / GaN MIS-HEMTs with 850-V 0 . 98-mΩ ∙ cm 2 for Power Device Applications , 2018 .

[8]  U. Mishra,et al.  The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs , 2001 .

[9]  Shu Yang,et al.  Performance enhancement of normally-off Al2O3/AlN/GaN MOS-Channel-HEMTs with an ALD-grown AlN interfacial layer , 2014, 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD).

[10]  Jin Wei,et al.  Integration of LPCVD-SiNx gate dielectric with recessed-gate E-mode GaN MIS-FETs: Toward high performance, high stability and long TDDB lifetime , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[11]  Robert F. Davis,et al.  High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma , 1997 .

[12]  Karim S. Boutros,et al.  Gate‐recessed normally‐off GaN‐on‐ Si HEMT using a new O2‐BCl3 digital etching technique , 2010 .

[13]  C. Wen,et al.  Gate-Recessed Normally OFF GaN MOSHEMT With High-Temperature Oxidation/Wet Etching Using LPCVD Si3N4 as the Mask , 2018, IEEE Transactions on Electron Devices.

[14]  Toshi-kazu Suzuki,et al.  Suppression of drain-induced barrier lowering by double-recess overlapped gate structure in normally-off AlGaN-GaN MOSFETs , 2018, Applied Physics Letters.

[15]  Primit Parikh,et al.  Commercialization of high 600V GaN-on-silicon power HEMTs and diodes , 2013, 2013 IEEE Energytech.

[16]  A. Soltani,et al.  Modeling of AlGaN/GaN HEMTs using field-plate technology , 2009, 2009 3rd International Conference on Signals, Circuits and Systems (SCS).

[17]  Kuei-Shu Chang-Liao,et al.  Study of gate oxide traps in HfO2/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by use of ac transconductance method , 2013 .

[18]  C. Wen,et al.  Characterization of 880 V Normally Off GaN MOSHEMT on Silicon Substrate Fabricated With a Plasma-Free, Self-Terminated Gate Recess Process , 2018, IEEE Transactions on Electron Devices.

[19]  Jin Wei,et al.  Dependence of ${V}_{\text {TH}}$ Stability on Gate-Bias Under Reverse-Bias Stress in E-mode GaN MIS-FET , 2018, IEEE Electron Device Letters.

[20]  Yilong Hao,et al.  900 V/1.6 mΩ · cm2 normally off Al 2O3/GaN MOSFET on silicon substrate , 2014 .

[21]  Denis Marcon,et al.  Direct comparison of GaN-based e-mode architectures (recessed MISHEMT and p-GaN HEMTs) processed on 200mm GaN-on-Si with Au-free technology , 2015, Photonics West - Optoelectronic Materials and Devices.

[22]  Holger Kalisch,et al.  Recessed-Gate Enhancement-Mode AlGaN/GaN Heterostructure Field-Effect Transistors on Si with Record DC Performance , 2011 .

[23]  Bo Zhang,et al.  7.6 V Threshold Voltage High-Performance Normally-Off Al2O3/GaN MOSFET Achieved by Interface Charge Engineering , 2016, IEEE Electron Device Letters.

[24]  Jin Wei,et al.  Normally-Off LPCVD-SiNx/GaN MIS-FET With Crystalline Oxidation Interlayer , 2017, IEEE Electron Device Letters.

[25]  D. Ueda,et al.  GaN on Si Technologies for Power Switching Devices , 2013, IEEE Transactions on Electron Devices.

[26]  O. Demchenko,et al.  Field-plate design optimization for high-power GaN high electron mobility transistors , 2017, 2017 International Siberian Conference on Control and Communications (SIBCON).

[27]  Yandong He,et al.  823-mA/mm Drain Current Density and 945-MW/cm2 Baliga’s Figure-of-Merit Enhancement-Mode GaN MISFETs With a Novel PEALD-AlN/LPCVD-Si3N4 Dual-Gate Dielectric , 2018, IEEE Electron Device Letters.

[28]  Kevin J. Chen,et al.  Influence of AlN Passivation on Dynamic ON-Resistance and Electric Field Distribution in High-Voltage AlGaN/GaN-on-Si HEMTs , 2014, IEEE Transactions on Electron Devices.

[29]  Bo Zhang,et al.  Threshold voltage modulation by interface charge engineering for high performance normally-off GaN MOSFETs with high faulty turn-on immunity , 2016, 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD).

[30]  H. Iwai,et al.  Enhancement-Mode GaN MIS-HEMTs With LaHfOx Gate Insulator for Power Application , 2017, IEEE Electron Device Letters.

[31]  Peide D. Ye,et al.  GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric , 2005 .

[32]  Kevin J. Chen,et al.  Gate-Recessed Normally-OFF GaN MOSHEMT With Improved Channel Mobility and Dynamic Performance Using AlN/Si3N4 as Passivation and Post Gate-Recess Channel Protection Layers , 2017, IEEE Electron Device Letters.

[33]  Xin Wang,et al.  Channel Engineering of Normally-OFF AlGaN/GaN MOS-HEMTs by Atomic Layer Etching and High- $\kappa$ Dielectric , 2018, IEEE Electron Device Letters.

[34]  Hui Yang,et al.  Normally OFF GaN-on-Si MIS-HEMTs Fabricated With LPCVD-SiNx Passivation and High-Temperature Gate Recess , 2016, IEEE Transactions on Electron Devices.