Straight to the Source: Detecting Aggregate Objects in Astronomical Images With Proper Error Control

The next generation of telescopes, coming online in the next decade, will acquire terabytes of image data each night. Collectively, these large images will contain billions of interesting objects, which astronomers call sources. One critical task for astronomers is to construct from the image data a detailed source catalog that gives the sky coordinates and other properties of all detected sources. The source catalog is the primary data product produced by most telescopes and serves as an important input for studies that build and test new astrophysical theories. To construct an accurate catalog, the sources must first be detected in the image. A variety of effective source detection algorithms exist in the astronomical literature, but few, if any, provide rigorous statistical control of error rates. A variety of multiple testing procedures exist in the statistical literature that can provide rigorous error control over pixelwise errors, but these do not provide control over errors at the level of sources, which is what astronomers need. In this article, we propose a technique that is effective at source detection while providing rigorous control on sourcewise error rates. We demonstrate our approach with data from the Chandra X-ray Observatory Satellite. Our method is competitive with existing astronomical methods, even finding two new sources that were missed by previous studies, while providing stronger performance guarantees and without requiring costly follow up studies that are commonly required with current techniques.

[1]  C. Megan Urry,et al.  The Extended Chandra Deep Field-South Survey: X-Ray Point-Source Catalog , 2006 .

[2]  A. Strong Maximum Entropy imaging with INTEGRAL/SPI data , 2003 .

[3]  L. Wasserman,et al.  A stochastic process approach to false discovery control , 2004, math/0406519.

[4]  Martin C. Weisskopf,et al.  Chandra X-ray Observatory (CXO): overview , 1999, Astronomical Telescopes and Instrumentation.

[5]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[6]  V Ibáñez,et al.  [On the likelihood ratio]. , 2001, Medicina clinica.

[7]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[8]  C. Jones,et al.  Matched Filter Source Detection Applied to the ROSAT PSPC and the Determination of the Number-Flux Relation , 1995 .

[9]  Robert Rosner,et al.  A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data , 2001 .

[10]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[11]  Antonio Maggio,et al.  A Method Based on Wavelet Transforms for Source Detection in Photon-counting Detector Images. I. Theory and General Properties , 1997 .

[12]  J. Anthony Tyson,et al.  Large Synoptic Survey Telescope: Overview , 2002, SPIE Astronomical Telescopes + Instrumentation.

[13]  Christopher J. Miller,et al.  Nonparametric Inference for the Cosmic Microwave Background , 2004, astro-ph/0410140.

[14]  I. Smail,et al.  THE CHANDRA DEEP FIELD-SOUTH SURVEY: 4 Ms SOURCE CATALOGS , 2008, 0806.3968.

[15]  I. Verdinelli,et al.  False Discovery Control for Random Fields , 2004 .

[16]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[17]  Finding clusters in SZ surveys , 2005, astro-ph/0501132.

[18]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[19]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[20]  R. Buckner,et al.  Human Brain Mapping 6:373–377(1998) � Event-Related fMRI and the Hemodynamic Response , 2022 .

[21]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[22]  Vladimir I. Piterbarg,et al.  Asymptotic Methods in the Theory of Gaussian Processes and Fields , 1995 .

[23]  Nava Rubin,et al.  Cluster-based analysis of FMRI data , 2006, NeuroImage.

[24]  D. Donoho,et al.  Higher criticism thresholding: Optimal feature selection when useful features are rare and weak , 2008, Proceedings of the National Academy of Sciences.

[25]  D. V. Dyk,et al.  Statistical analysis of stellar evolution , 2009, 0905.2547.

[26]  Christopher R. Genovese,et al.  A New Source Detection Algorithm Using the False-Discovery Rate , 2001, astro-ph/0110570.

[27]  Roberto Gilmozzi,et al.  Chandra Deep Field South: The 1 Ms Catalog , 2002 .

[28]  M. Hobson,et al.  A fast Bayesian approach to discrete object detection in astronomical data sets – PowellSnakes I , 2008, 0802.3916.

[29]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[30]  Christopher R. Genovese,et al.  A Bayesian Time-Course Model for Functional Magnetic Resonance Imaging Data , 2000 .

[31]  Soojong Pak,et al.  Deep u*- and g-Band Imaging of the Spitzer Space Telescope First Look Survey Field: Observations and Source Catalogs , 2006, 0708.0886.

[32]  J. G. Bartlett,et al.  Catalog extraction in SZ cluster surveys : a matched filter approach , 2006, astro-ph/0602424.

[33]  Arthur Kosowsky The Atacama Cosmology Telescope , 2003 .

[34]  V. Dose,et al.  Background-Source separation in astronomical images with Bayesian Probability Theory , 2009, 0903.2342.

[35]  Ann B. Lee,et al.  EXPLOITING LOW-DIMENSIONAL STRUCTURE IN ASTRONOMICAL SPECTRA , 2008, 0807.2900.

[36]  Ivan Valtchanov Comparison of Object Detection Procedures for XMM-Newton Images , 2001 .

[37]  Wenguang Sun,et al.  Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control , 2007 .

[38]  L. Toffolatti,et al.  The Mexican Hat Wavelet Family. Application to point source detection in cosmic microwave background maps , 2005, 2005 13th European Signal Processing Conference.

[39]  S. Oliver,et al.  Bayesian Methods of Astronomical Source Extraction , 2005, astro-ph/0512597.

[40]  H. Trac,et al.  Microwave Sky Simulations and Projections for Galaxy Cluster Detection with the Atacama Cosmology Telescope , 2006, astro-ph/0612140.

[41]  N. Meinshausen,et al.  Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses , 2005, math/0501289.

[42]  Y. Benjamini,et al.  Adaptive linear step-up procedures that control the false discovery rate , 2006 .

[43]  John D. Storey A direct approach to false discovery rates , 2002 .

[44]  R. Gastaud,et al.  Comparison of source detection procedures for XMM-Newton images , 2001 .

[45]  M. Hobson,et al.  A Bayesian approach to discrete object detection in astronomical data sets , 2002, astro-ph/0204457.

[46]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[47]  L. Kewley,et al.  The Chandra Deep Field-South: The 1 Million Second Exposure , 2001, astro-ph/0110452.

[48]  UCSD,et al.  Direct Constraints on the Dark Matter Self-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657–56 , 2004 .